]> git.djapps.eu Git - pkg/ggml/sources/llama.cpp/commitdiff
llama : support OLMoE (#9462)
authorShane A <redacted>
Mon, 16 Sep 2024 06:47:37 +0000 (23:47 -0700)
committerGitHub <redacted>
Mon, 16 Sep 2024 06:47:37 +0000 (09:47 +0300)
README.md
convert_hf_to_gguf.py
gguf-py/gguf/constants.py
gguf-py/gguf/tensor_mapping.py
src/llama.cpp

index 9a10ead83189ed75295fcc2da54f7090f083799b..4d24dd591c68cca150d2d7d9764c19abd4df48af 100644 (file)
--- a/README.md
+++ b/README.md
@@ -77,6 +77,7 @@ Typically finetunes of the base models below are supported as well.
 - [x] [SEA-LION](https://huggingface.co/models?search=sea-lion)
 - [x] [GritLM-7B](https://huggingface.co/GritLM/GritLM-7B) + [GritLM-8x7B](https://huggingface.co/GritLM/GritLM-8x7B)
 - [x] [OLMo](https://allenai.org/olmo)
+- [x] [OLMoE](https://huggingface.co/allenai/OLMoE-1B-7B-0924)
 - [x] [Granite models](https://huggingface.co/collections/ibm-granite/granite-code-models-6624c5cec322e4c148c8b330)
 - [x] [GPT-NeoX](https://github.com/EleutherAI/gpt-neox) + [Pythia](https://github.com/EleutherAI/pythia)
 - [x] [Snowflake-Arctic MoE](https://huggingface.co/collections/Snowflake/arctic-66290090abe542894a5ac520)
index d995ed76476b007a01487deb67053320380c5c77..f026977e9a07dc82ef0f10310d8725e6f42426e1 100755 (executable)
@@ -2998,6 +2998,66 @@ class OlmoModel(Model):
         return [(self.map_tensor_name(name), data_torch)]
 
 
+@Model.register("OlmoeForCausalLM")
+class OlmoeModel(Model):
+    model_arch = gguf.MODEL_ARCH.OLMOE
+
+    def set_gguf_parameters(self):
+        super().set_gguf_parameters()
+        self.gguf_writer.add_layer_norm_rms_eps(1e-5)
+        if (n_experts := self.hparams.get("num_experts")) is not None:
+            self.gguf_writer.add_expert_count(n_experts)
+
+    _experts: list[dict[str, Tensor]] | None = None
+
+    # Copied from: Qwen2MoeModel
+    def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
+        # process the experts separately
+        if name.find("experts") != -1:
+            n_experts = self.hparams["num_experts"]
+            assert bid is not None
+
+            if self._experts is None:
+                self._experts = [{} for _ in range(self.block_count)]
+
+            self._experts[bid][name] = data_torch
+
+            if len(self._experts[bid]) >= n_experts * 3:
+                tensors: list[tuple[str, Tensor]] = []
+
+                # merge the experts into a single 3d tensor
+                for w_name in ["down_proj", "gate_proj", "up_proj"]:
+                    datas: list[Tensor] = []
+
+                    for xid in range(n_experts):
+                        ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
+                        datas.append(self._experts[bid][ename])
+                        del self._experts[bid][ename]
+
+                    data_torch = torch.stack(datas, dim=0)
+
+                    merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
+
+                    new_name = self.map_tensor_name(merged_name)
+
+                    tensors.append((new_name, data_torch))
+                return tensors
+            else:
+                return []
+
+        return [(self.map_tensor_name(name), data_torch)]
+
+    # Copied from: Qwen2MoeModel
+    def prepare_tensors(self):
+        super().prepare_tensors()
+
+        if self._experts is not None:
+            # flatten `list[dict[str, Tensor]]` into `list[str]`
+            experts = [k for d in self._experts for k in d.keys()]
+            if len(experts) > 0:
+                raise ValueError(f"Unprocessed experts: {experts}")
+
+
 @Model.register("JinaBertModel", "JinaBertForMaskedLM")
 class JinaBertV2Model(BertModel):
     model_arch = gguf.MODEL_ARCH.JINA_BERT_V2
index 2c8545455b14c790ab5d8a25f888adb554d92d22..0d88649d8483404d1b2fac360e66afe06018b84e 100644 (file)
@@ -220,6 +220,7 @@ class MODEL_ARCH(IntEnum):
     COMMAND_R    = auto()
     DBRX         = auto()
     OLMO         = auto()
+    OLMOE        = auto()
     OPENELM      = auto()
     ARCTIC       = auto()
     DEEPSEEK2    = auto()
@@ -375,6 +376,7 @@ MODEL_ARCH_NAMES: dict[MODEL_ARCH, str] = {
     MODEL_ARCH.COMMAND_R:      "command-r",
     MODEL_ARCH.DBRX:           "dbrx",
     MODEL_ARCH.OLMO:           "olmo",
+    MODEL_ARCH.OLMOE:          "olmoe",
     MODEL_ARCH.OPENELM:        "openelm",
     MODEL_ARCH.ARCTIC:         "arctic",
     MODEL_ARCH.DEEPSEEK2:      "deepseek2",
@@ -1027,6 +1029,23 @@ MODEL_TENSORS: dict[MODEL_ARCH, list[MODEL_TENSOR]] = {
         MODEL_TENSOR.FFN_DOWN,
         MODEL_TENSOR.FFN_UP,
     ],
+    MODEL_ARCH.OLMOE: [
+        MODEL_TENSOR.TOKEN_EMBD,
+        MODEL_TENSOR.OUTPUT_NORM,
+        MODEL_TENSOR.OUTPUT,
+        MODEL_TENSOR.ATTN_OUT,
+        MODEL_TENSOR.ATTN_Q,
+        MODEL_TENSOR.ATTN_K,
+        MODEL_TENSOR.ATTN_V,
+        MODEL_TENSOR.ATTN_NORM,
+        MODEL_TENSOR.ATTN_Q_NORM,
+        MODEL_TENSOR.ATTN_K_NORM,
+        MODEL_TENSOR.FFN_NORM,
+        MODEL_TENSOR.FFN_GATE_INP,
+        MODEL_TENSOR.FFN_GATE_EXP,
+        MODEL_TENSOR.FFN_UP_EXP,
+        MODEL_TENSOR.FFN_DOWN_EXP,
+    ],
     MODEL_ARCH.OPENELM: [
         MODEL_TENSOR.TOKEN_EMBD,
         MODEL_TENSOR.OUTPUT_NORM,
index bc9a13ee5bdf5f81b8d65be69593d739c30690db..2ebfa2b43c4712eb30a5b684357a7a19f8b14f43 100644 (file)
@@ -13,7 +13,7 @@ class TensorNameMap:
             "transformer.wte",                           # gpt2 gpt-j mpt refact qwen dbrx jais exaone
             "transformer.word_embeddings",               # falcon
             "word_embeddings",                           # bloom
-            "model.embed_tokens",                        # llama-hf nemotron
+            "model.embed_tokens",                        # llama-hf nemotron olmoe
             "tok_embeddings",                            # llama-pth
             "embeddings.word_embeddings",                # bert nomic-bert
             "language_model.embedding.word_embeddings",  # persimmon
@@ -54,7 +54,7 @@ class TensorNameMap:
         # Output
         MODEL_TENSOR.OUTPUT: (
             "embed_out",                 # gptneox
-            "lm_head",                   # gpt2 mpt falcon llama-hf baichuan qwen mamba dbrx jais nemotron exaone
+            "lm_head",                   # gpt2 mpt falcon llama-hf baichuan qwen mamba dbrx jais nemotron exaone olmoe
             "output",                    # llama-pth bloom internlm2
             "word_embeddings_for_head",  # persimmon
             "lm_head.linear",            # phi2
@@ -66,7 +66,7 @@ class TensorNameMap:
         MODEL_TENSOR.OUTPUT_NORM: (
             "gpt_neox.final_layer_norm",               # gptneox
             "transformer.ln_f",                        # gpt2 gpt-j falcon jais exaone
-            "model.norm",                              # llama-hf baichuan internlm2
+            "model.norm",                              # llama-hf baichuan internlm2 olmoe
             "norm",                                    # llama-pth
             "transformer.norm_f",                      # mpt dbrx
             "ln_f",                                    # refact bloom qwen gpt2
@@ -98,7 +98,7 @@ class TensorNameMap:
             "transformer.h.{bid}.input_layernorm",                  # falcon7b
             "h.{bid}.input_layernorm",                              # bloom
             "transformer.h.{bid}.ln_mlp",                           # falcon40b
-            "model.layers.{bid}.input_layernorm",                   # llama-hf nemotron
+            "model.layers.{bid}.input_layernorm",                   # llama-hf nemotron olmoe
             "layers.{bid}.attention_norm",                          # llama-pth
             "language_model.encoder.layers.{bid}.input_layernorm",  # persimmon
             "model.layers.{bid}.ln1",                               # yi
@@ -142,7 +142,7 @@ class TensorNameMap:
 
         # Attention query
         MODEL_TENSOR.ATTN_Q: (
-            "model.layers.{bid}.self_attn.q_proj",                       # llama-hf nemotron
+            "model.layers.{bid}.self_attn.q_proj",                       # llama-hf nemotron olmoe
             "layers.{bid}.attention.wq",                                 # llama-pth
             "encoder.layer.{bid}.attention.self.query",                  # bert
             "transformer.h.{bid}.attn.q_proj",                           # gpt-j
@@ -154,7 +154,7 @@ class TensorNameMap:
 
         # Attention key
         MODEL_TENSOR.ATTN_K: (
-            "model.layers.{bid}.self_attn.k_proj",                     # llama-hf nemotron
+            "model.layers.{bid}.self_attn.k_proj",                     # llama-hf nemotron olmoe
             "layers.{bid}.attention.wk",                               # llama-pth
             "encoder.layer.{bid}.attention.self.key",                  # bert
             "transformer.h.{bid}.attn.k_proj",                         # gpt-j
@@ -167,7 +167,7 @@ class TensorNameMap:
 
         # Attention value
         MODEL_TENSOR.ATTN_V: (
-            "model.layers.{bid}.self_attn.v_proj",                       # llama-hf nemotron
+            "model.layers.{bid}.self_attn.v_proj",                       # llama-hf nemotron olmoe
             "layers.{bid}.attention.wv",                                 # llama-pth
             "encoder.layer.{bid}.attention.self.value",                  # bert
             "transformer.h.{bid}.attn.v_proj",                           # gpt-j
@@ -185,7 +185,7 @@ class TensorNameMap:
             "transformer.blocks.{bid}.attn.out_proj",                       # mpt
             "transformer.h.{bid}.self_attention.dense",                     # falcon
             "h.{bid}.self_attention.dense",                                 # bloom
-            "model.layers.{bid}.self_attn.o_proj",                          # llama-hf nemotron
+            "model.layers.{bid}.self_attn.o_proj",                          # llama-hf nemotron olmoe
             "layers.{bid}.attention.wo",                                    # llama-pth
             "encoder.layer.{bid}.attention.output.dense",                   # bert
             "transformer.h.{bid}.attn.out_proj",                            # gpt-j
@@ -229,7 +229,7 @@ class TensorNameMap:
             "transformer.h.{bid}.ln_2",                                      # gpt2 refact qwen jais exaone
             "h.{bid}.post_attention_layernorm",                              # bloom
             "transformer.blocks.{bid}.norm_2",                               # mpt
-            "model.layers.{bid}.post_attention_layernorm",                   # llama-hf nemotron
+            "model.layers.{bid}.post_attention_layernorm",                   # llama-hf nemotron olmoe
             "layers.{bid}.ffn_norm",                                         # llama-pth
             "language_model.encoder.layers.{bid}.post_attention_layernorm",  # persimmon
             "model.layers.{bid}.ln2",                                        # yi
@@ -253,7 +253,7 @@ class TensorNameMap:
         MODEL_TENSOR.FFN_GATE_INP: (
             "layers.{bid}.feed_forward.gate",             # mixtral
             "model.layers.{bid}.block_sparse_moe.gate",   # mixtral
-            "model.layers.{bid}.mlp.gate",                # qwen2moe
+            "model.layers.{bid}.mlp.gate",                # qwen2moe olmoe
             "transformer.decoder_layer.{bid}.router",     # Grok
             "transformer.blocks.{bid}.ffn.router.layer",  # dbrx
         ),
@@ -295,7 +295,7 @@ class TensorNameMap:
             "layers.{bid}.feed_forward.experts.w3",          # mixtral (merged)
             "transformer.decoder_layer.{bid}.moe.linear_v",  # Grok (merged)
             "transformer.blocks.{bid}.ffn.experts.mlp.v1",   # dbrx
-            "model.layers.{bid}.mlp.experts.up_proj",        # qwen2moe (merged)
+            "model.layers.{bid}.mlp.experts.up_proj",        # qwen2moe olmoe (merged)
         ),
 
         MODEL_TENSOR.FFN_UP_SHEXP: (
@@ -327,7 +327,7 @@ class TensorNameMap:
             "layers.{bid}.feed_forward.experts.w1",         # mixtral (merged)
             "transformer.decoder_layer.{bid}.moe.linear",   # Grok (merged)
             "transformer.blocks.{bid}.ffn.experts.mlp.w1",  # dbrx
-            "model.layers.{bid}.mlp.experts.gate_proj",     # qwen2moe (merged)
+            "model.layers.{bid}.mlp.experts.gate_proj",     # qwen2moe olmoe (merged)
         ),
 
         MODEL_TENSOR.FFN_GATE_SHEXP: (
@@ -367,7 +367,7 @@ class TensorNameMap:
             "layers.{bid}.feed_forward.experts.w2",          # mixtral (merged)
             "transformer.decoder_layer.{bid}.moe.linear_1",  # Grok (merged)
             "transformer.blocks.{bid}.ffn.experts.mlp.w2",   # dbrx
-            "model.layers.{bid}.mlp.experts.down_proj",      # qwen2moe (merged)
+            "model.layers.{bid}.mlp.experts.down_proj",      # qwen2moe olmoe (merged)
         ),
 
         MODEL_TENSOR.FFN_DOWN_SHEXP: (
@@ -378,7 +378,7 @@ class TensorNameMap:
         MODEL_TENSOR.ATTN_Q_NORM: (
             "language_model.encoder.layers.{bid}.self_attention.q_layernorm",
             "model.layers.{bid}.self_attn.q_layernorm",                       # persimmon
-            "model.layers.{bid}.self_attn.q_norm",                            # cohere
+            "model.layers.{bid}.self_attn.q_norm",                            # cohere olmoe
             "transformer.blocks.{bid}.attn.q_ln",                             # sea-lion
             "encoder.layer.{bid}.attention.self.layer_norm_q",                # jina-bert-v2
             "transformer.layers.{bid}.attn.q_norm",                           # openelm
@@ -387,7 +387,7 @@ class TensorNameMap:
         MODEL_TENSOR.ATTN_K_NORM: (
             "language_model.encoder.layers.{bid}.self_attention.k_layernorm",
             "model.layers.{bid}.self_attn.k_layernorm",                       # persimmon
-            "model.layers.{bid}.self_attn.k_norm",                            # cohere
+            "model.layers.{bid}.self_attn.k_norm",                            # cohere olmoe
             "transformer.blocks.{bid}.attn.k_ln",                             # sea-lion
             "encoder.layer.{bid}.attention.self.layer_norm_k",                # jina-bert-v2
             "transformer.layers.{bid}.attn.k_norm",                           # openelm
index aa565723bc1a41b82c02eef13918a07541fb8e7c..30997bf150c9b0203d9fc45f6ec13197f88cd950 100644 (file)
@@ -202,6 +202,7 @@ enum llm_arch {
     LLM_ARCH_COMMAND_R,
     LLM_ARCH_DBRX,
     LLM_ARCH_OLMO,
+    LLM_ARCH_OLMOE,
     LLM_ARCH_OPENELM,
     LLM_ARCH_ARCTIC,
     LLM_ARCH_DEEPSEEK2,
@@ -251,6 +252,7 @@ static const std::map<llm_arch, const char *> LLM_ARCH_NAMES = {
     { LLM_ARCH_COMMAND_R,       "command-r"    },
     { LLM_ARCH_DBRX,            "dbrx"         },
     { LLM_ARCH_OLMO,            "olmo"         },
+    { LLM_ARCH_OLMOE,           "olmoe"        },
     { LLM_ARCH_OPENELM,         "openelm"      },
     { LLM_ARCH_ARCTIC,          "arctic"       },
     { LLM_ARCH_DEEPSEEK2,       "deepseek2"    },
@@ -1193,6 +1195,26 @@ static const std::map<llm_arch, std::map<llm_tensor, std::string>> LLM_TENSOR_NA
             { LLM_TENSOR_FFN_UP,          "blk.%d.ffn_up" },
         },
     },
+    {
+        LLM_ARCH_OLMOE,
+        {
+            { LLM_TENSOR_TOKEN_EMBD,         "token_embd" },
+            { LLM_TENSOR_OUTPUT_NORM,        "output_norm" },
+            { LLM_TENSOR_OUTPUT,             "output" },
+            { LLM_TENSOR_ATTN_NORM,          "blk.%d.attn_norm" },
+            { LLM_TENSOR_ATTN_Q,             "blk.%d.attn_q" },
+            { LLM_TENSOR_ATTN_K,             "blk.%d.attn_k" },
+            { LLM_TENSOR_ATTN_V,             "blk.%d.attn_v" },
+            { LLM_TENSOR_ATTN_OUT,           "blk.%d.attn_output" },
+            { LLM_TENSOR_ATTN_Q_NORM,        "blk.%d.attn_q_norm" },
+            { LLM_TENSOR_ATTN_K_NORM,        "blk.%d.attn_k_norm" },
+            { LLM_TENSOR_FFN_NORM,           "blk.%d.ffn_norm" },
+            { LLM_TENSOR_FFN_GATE_INP,       "blk.%d.ffn_gate_inp" },
+            { LLM_TENSOR_FFN_GATE_EXPS,      "blk.%d.ffn_gate_exps" },
+            { LLM_TENSOR_FFN_DOWN_EXPS,      "blk.%d.ffn_down_exps" },
+            { LLM_TENSOR_FFN_UP_EXPS,        "blk.%d.ffn_up_exps" },
+        },
+    },
     {
         LLM_ARCH_OPENELM,
         {
@@ -2277,6 +2299,7 @@ enum e_model {
     MODEL_MEDIUM,
     MODEL_LARGE,
     MODEL_XL,
+    MODEL_A1_7B,
     MODEL_A2_7B,
     MODEL_8x7B,
     MODEL_8x22B,
@@ -5241,6 +5264,7 @@ static const char * llama_model_type_name(e_model type) {
         case MODEL_MEDIUM:        return "0.4B";
         case MODEL_LARGE:         return "0.8B";
         case MODEL_XL:            return "1.5B";
+        case MODEL_A1_7B:         return "A1.7B";
         case MODEL_A2_7B:         return "A2.7B";
         case MODEL_8x7B:          return "8x7B";
         case MODEL_8x22B:         return "8x22B";
@@ -5791,6 +5815,14 @@ static void llm_load_hparams(
                     default: model.type = e_model::MODEL_UNKNOWN;
                 }
             } break;
+        case LLM_ARCH_OLMOE:
+            {
+                ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
+                switch (hparams.n_layer) {
+                    case 16: model.type = e_model::MODEL_A1_7B; break;
+                    default: model.type = e_model::MODEL_UNKNOWN;
+                }
+            } break;
         case LLM_ARCH_OPENELM:
             {
                 ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
@@ -8018,6 +8050,44 @@ static bool llm_load_tensors(
                         layer.ffn_up   = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP,   "weight", i), {n_embd,   n_ff});
                     }
                 } break;
+            case LLM_ARCH_OLMOE:
+                {
+                    model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
+
+                    // output
+                    {
+                        model.output_norm = ml.create_tensor(ctx_output,       tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
+                        model.output      = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT,      "weight"), {n_embd, n_vocab});
+                    }
+
+                    for (int i = 0; i < n_layer; ++i) {
+                        ggml_context * ctx_layer = ctx_for_layer(i);
+                        ggml_context * ctx_split = ctx_for_layer_split(i);
+
+                        auto & layer = model.layers[i];
+
+                        layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
+
+                        layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q,   "weight", i), {n_embd, n_embd});
+                        layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K,   "weight", i), {n_embd, n_embd_gqa});
+                        layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V,   "weight", i), {n_embd, n_embd_gqa});
+                        layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
+                        layer.attn_q_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {n_embd});
+                        layer.attn_k_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {n_embd});
+
+                        layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
+
+                        layer.ffn_gate_inp = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert});
+
+                        GGML_ASSERT(n_expert      > 0);
+                        GGML_ASSERT(n_expert_used > 0);
+
+                        // MoE branch
+                        layer.ffn_gate_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), {n_embd, n_ff,   n_expert});
+                        layer.ffn_down_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), {n_ff,   n_embd, n_expert});
+                        layer.ffn_up_exps   = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP_EXPS,   "weight", i), {n_embd, n_ff,   n_expert});
+                    }
+                } break;
             case LLM_ARCH_OPENELM:
                 {
                     model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
@@ -13832,6 +13902,134 @@ struct llm_build_context {
         return gf;
     }
 
+    // based on the build_qwen2moe() function, changes:
+    //   * removed shared experts
+    //   * removed bias
+    //   * added q, k norm
+    struct ggml_cgraph * build_olmoe() {
+        struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, llama_model_max_nodes(model), false);
+
+        // mutable variable, needed during the last layer of the computation to skip unused tokens
+        int32_t n_tokens = this->n_tokens;
+
+        const int64_t n_embd_head = hparams.n_embd_head_v;
+        GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
+        GGML_ASSERT(n_embd_head == hparams.n_rot);
+
+        struct ggml_tensor * cur;
+        struct ggml_tensor * inpL;
+
+        inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
+
+        // inp_pos - contains the positions
+        struct ggml_tensor * inp_pos = build_inp_pos();
+
+        // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
+        struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
+
+        for (int il = 0; il < n_layer; ++il) {
+            struct ggml_tensor * inpSA = inpL;
+
+            // norm
+            cur = llm_build_norm(ctx0, inpL, hparams,
+                    model.layers[il].attn_norm, NULL,
+                    LLM_NORM_RMS, cb, il);
+            cb(cur, "attn_norm", il);
+
+            // self_attention
+            {
+                // compute Q and K and RoPE them
+                struct ggml_tensor * Qcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wq, cur);
+                cb(Qcur, "Qcur", il);
+
+                struct ggml_tensor * Kcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wk, cur);
+                cb(Kcur, "Kcur", il);
+
+                struct ggml_tensor * Vcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wv, cur);
+                cb(Vcur, "Vcur", il);
+
+                Qcur = llm_build_norm(ctx0, Qcur, hparams, model.layers[il].attn_q_norm, NULL,
+                        LLM_NORM_RMS, cb, il);
+                cb(Qcur, "Qcur_normed", il);
+
+                Kcur = llm_build_norm(ctx0, Kcur, hparams, model.layers[il].attn_k_norm, NULL,
+                        LLM_NORM_RMS, cb, il);
+                cb(Kcur, "Kcur_normed", il);
+
+                Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
+                Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
+
+                Qcur = ggml_rope_ext(
+                    ctx0, Qcur, inp_pos, nullptr,
+                    n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
+                    ext_factor, attn_factor, beta_fast, beta_slow
+                );
+                cb(Qcur, "Qcur_rope", il);
+
+                Kcur = ggml_rope_ext(
+                    ctx0, Kcur, inp_pos, nullptr,
+                    n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
+                    ext_factor, attn_factor, beta_fast, beta_slow
+                );
+                cb(Kcur, "Kcur_rope", il);
+
+                cur = llm_build_kv(ctx0, lctx, kv_self, gf,
+                        model.layers[il].wo, NULL,
+                        Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
+            }
+
+            if (il == n_layer - 1) {
+                // skip computing output for unused tokens
+                struct ggml_tensor * inp_out_ids = build_inp_out_ids();
+                n_tokens = n_outputs;
+                cur   = ggml_get_rows(ctx0,   cur, inp_out_ids);
+                inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
+            }
+
+            struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
+            cb(ffn_inp, "ffn_inp", il);
+
+            // MoE branch
+            cur = llm_build_norm(ctx0, ffn_inp, hparams,
+                    model.layers[il].ffn_norm, NULL,
+                    LLM_NORM_RMS, cb, il);
+            cb(cur, "ffn_norm", il);
+
+            cur = llm_build_moe_ffn(ctx0, lctx, cur,
+                    model.layers[il].ffn_gate_inp,
+                    model.layers[il].ffn_up_exps,
+                    model.layers[il].ffn_gate_exps,
+                    model.layers[il].ffn_down_exps,
+                    n_expert, n_expert_used,
+                    LLM_FFN_SILU, false,
+                    false, 0.0,
+                    cb, il);
+            cb(cur, "ffn_moe_out", il);
+
+            cur = ggml_add(ctx0, cur, ffn_inp);
+            cur = lctx.cvec.apply_to(ctx0, cur, il);
+            cb(cur, "l_out", il);
+
+            // input for next layer
+            inpL = cur;
+        }
+
+        cur = inpL;
+
+        cur = llm_build_norm(ctx0, cur, hparams,
+                model.output_norm, NULL,
+                LLM_NORM_RMS, cb, -1);
+        cb(cur, "result_norm", -1);
+
+        // lm_head
+        cur = llm_build_lora_mm(lctx, ctx0, model.output, cur);
+        cb(cur, "result_output", -1);
+
+        ggml_build_forward_expand(gf, cur);
+
+        return gf;
+    }
+
     struct ggml_cgraph * build_openelm() {
         struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, llama_model_max_nodes(model), false);
 
@@ -15712,6 +15910,10 @@ static struct ggml_cgraph * llama_build_graph(
             {
                 result = llm.build_olmo();
             } break;
+        case LLM_ARCH_OLMOE:
+            {
+                result = llm.build_olmoe();
+            } break;
         case LLM_ARCH_OPENELM:
             {
                 result = llm.build_openelm();
@@ -18896,6 +19098,7 @@ enum llama_rope_type llama_rope_type(const struct llama_model * model) {
         case LLM_ARCH_QWEN:
         case LLM_ARCH_QWEN2:
         case LLM_ARCH_QWEN2MOE:
+        case LLM_ARCH_OLMOE:
         case LLM_ARCH_PHI2:
         case LLM_ARCH_PHI3:
         case LLM_ARCH_GEMMA: