#include "ggml-cuda/pool2d.cuh"
#include "ggml-cuda/quantize.cuh"
#include "ggml-cuda/rope.cuh"
+#include "ggml-cuda/roll.cuh"
#include "ggml-cuda/scale.cuh"
#include "ggml-cuda/softmax.cuh"
#include "ggml-cuda/ssm-conv.cuh"
case GGML_OP_ROPE_BACK:
ggml_cuda_op_rope_back(ctx, dst);
break;
+ case GGML_OP_ROLL:
+ ggml_cuda_op_roll(ctx, dst);
+ break;
case GGML_OP_IM2COL:
ggml_cuda_op_im2col(ctx, dst);
break;
memcpy(&max_bias, (const float *) op->op_params + 1, sizeof(float));
return max_bias == 0.0f;
}
+ case GGML_OP_ROLL:
+ if(op->src[0]->type == GGML_TYPE_F32) {
+ return true;
+ }
+ return false;
case GGML_OP_ROPE:
case GGML_OP_ROPE_BACK: {
return op->src[0]->nb[0] == ggml_type_size(op->src[0]->type) && ggml_is_contiguous_2(op->src[0]);
--- /dev/null
+#include "ggml-cuda/common.cuh"
+#include "roll.cuh"
+
+static __forceinline__ __device__ int64_t wrap_index(const int64_t idx, const int64_t ne) {
+ if (idx < 0) {
+ return idx + ne;
+ }
+ if (idx >= ne) {
+ return idx - ne;
+ }
+ return idx;
+}
+
+static __global__ void roll_f32_cuda(const float * __restrict__ src,
+ float * __restrict__ dst,
+ const int64_t ne00,
+ const int64_t ne01,
+ const int64_t ne02,
+ const int64_t ne03,
+ const int s0,
+ const int s1,
+ const int s2,
+ const int s3) {
+ const int64_t idx = int64_t(blockDim.x) * blockIdx.x + threadIdx.x;
+ const int64_t n_elements = ne00 * ne01 * ne02 * ne03;
+
+ if (idx >= n_elements) {
+ return;
+ }
+
+ const int64_t i0 = idx % ne00;
+ const int64_t i1 = (idx / ne00) % ne01;
+ const int64_t i2 = (idx / (ne00 * ne01)) % ne02;
+ const int64_t i3 = (idx / (ne00 * ne01 * ne02)) % ne03;
+
+ const int64_t d0 = wrap_index(i0 - s0, ne00);
+ const int64_t d1 = wrap_index(i1 - s1, ne01);
+ const int64_t d2 = wrap_index(i2 - s2, ne02);
+ const int64_t d3 = wrap_index(i3 - s3, ne03);
+
+ dst[i3 * (ne00 * ne01 * ne02) + i2 * (ne01 * ne00) + i1 * ne00 + i0] =
+ src[d3 * (ne00 * ne01 * ne02) + d2 * (ne01 * ne00) + d1 * ne00 + d0];
+}
+
+void ggml_cuda_op_roll(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
+ int s0 = dst->op_params[0];
+ int s1 = dst->op_params[1];
+ int s2 = dst->op_params[2];
+ int s3 = dst->op_params[3];
+
+ const ggml_tensor * src0 = dst->src[0];
+ const float * src0_d = (const float *) dst->src[0]->data;
+ float * dst_d = (float *) dst->data;
+
+ GGML_TENSOR_UNARY_OP_LOCALS;
+
+ GGML_ASSERT(dst->src[0]->type == GGML_TYPE_F32);
+ GGML_ASSERT(ggml_are_same_shape(dst->src[0], dst));
+
+ cudaStream_t stream = ctx.stream();
+
+ int64_t sz = (ne00 * ne01 * ne02 * ne03);
+ int64_t num_blocks = (sz + CUDA_ROLL_BLOCK_SIZE - 1) / CUDA_ROLL_BLOCK_SIZE;
+
+ roll_f32_cuda<<<num_blocks, CUDA_ROLL_BLOCK_SIZE, 0, stream>>>(
+ src0_d, dst_d, ne00, ne01, ne02, ne03, s0, s1, s2, s3);
+}