const char * data = is_host ? (const char *) src1->data : m_src1_data.data();
GGML_ASSERT(src1->nb[0] == ggml_element_size(src1));
- // TODO: 4d? (is that even used in practice?)
- // the extra dimension would need to be stored somewhere to be reflected in the imatrix file
- if (ggml_nrows(src1) != src1->ne[1] * src1->ne[2]) {
- LOG_ERR("%s: tensor has more than 3 dimensions: %s", __func__, wname.c_str());
- GGML_ASSERT(false);
- }
-
// this has been adapted to the new format of storing merged experts in a single 3d tensor
// ref: https://github.com/ggml-org/llama.cpp/pull/6387
if (t->op == GGML_OP_MUL_MAT_ID) {
GGML_ASSERT(ids->ne[1] == src1->ne[2]);
+ // the extra dimension would need to be stored somewhere to be reflected in the imatrix file
+ if (ggml_nrows(src1) != src1->ne[1] * src1->ne[2]) {
+ LOG_ERR("%s: tensor has more than 3 dimensions: %s", __func__, wname.c_str());
+ GGML_ASSERT(false);
+ }
+
m_ids.resize(ggml_nbytes(ids));
ggml_backend_tensor_get(ids, m_ids.data(), 0, ggml_nbytes(ids));
}
} else {
auto & e = m_stats[wname];
- const int64_t n_mat = src1->ne[2] * src1->ne[3];
-
+ const int64_t n_mat = src0->ne[2] * src0->ne[3];
+
+ // use a single count per dense tensor
+ // (necessary when merging older GGUF-imatrix files with 3d tensors)
+ if (e.counts.size() > 1) {
+ bool all_equal = true;
+ for (size_t i = 1; i < e.counts.size(); ++i) {
+ if (e.counts[0] != e.counts[i]) {
+ all_equal = false;
+ break;
+ }
+ }
+ if (all_equal) {
+ e.counts.resize(1);
+ }
+ }
if (e.values.empty()) {
e.values.resize(src1->ne[0] * n_mat, 0);
- e.counts.resize(n_mat, 0);
+ e.counts.resize(1, 0);
}
else if (e.values.size() != (size_t)(src1->ne[0] * n_mat)) {
LOG_ERR("%s: inconsistent size for %s (%d vs %d)\n", __func__, wname.c_str(), (int)e.values.size(), (int)(src1->ne[0] * n_mat));
exit(1); //GGML_ABORT("fatal error");
}
- else if (e.counts.size() != (size_t)n_mat) {
- LOG_ERR("%s: inconsistent expert count for %s (%d vs %d)\n", __func__, wname.c_str(), (int)e.counts.size(), (int)n_mat);
- exit(1); //GGML_ABORT("fatal error");
- }
LOG_DBGV(2, "%s[%d]: %32s, %s, %5d x %5d x %5d, %d\n", __func__, m_last_chunk, wname.c_str(), ggml_op_name(t->op), (int)src1->ne[0], (int)src1->ne[1], (int)src1->ne[2], (int)src1->type);
+
for (int64_t i3 = 0; i3 < src1->ne[3]; ++i3) {
for (int64_t i2 = 0; i2 < src1->ne[2]; ++i2) {
- const int64_t mat_id = i3 * src1->ne[2] + i2;
+ // handle 3D+ tensors, but flatten 3D+ activations when model tensor is 2D
+ const int64_t mat_id = (i3 % src0->ne[3]) * src0->ne[2] + (i2 % src0->ne[2]);
const int64_t mat_start = mat_id * src1->ne[0];
for (int64_t row = 0; row < src1->ne[1]; ++row) {
- const float * x = (const float *) (data + row * src1->nb[1] + i2 * src1->nb[2] + i3 * src1->ne[3]);
- e.counts[mat_id]++;
+ const float * x = (const float *) (data + row * src1->nb[1] + i2 * src1->nb[2] + i3 * src1->nb[3]);
for (int64_t j = 0; j < src1->ne[0]; ++j) {
e.values[mat_start + j] += x[j] * x[j];
if (!std::isfinite((float)e.values[j])) {
}
}
}
- const int32_t n_chunk = e.counts[mat_id] / chunk_size;
- if (n_chunk > m_last_chunk) {
- const int32_t chunk_step = n_chunk - m_last_chunk;
- m_last_chunk = n_chunk;
- if ((m_last_chunk % m_params.n_out_freq) / chunk_step == 0) {
- save_imatrix();
- }
- if (m_params.n_save_freq > 0 && (m_last_chunk % m_params.n_save_freq) / chunk_step == 0) {
- save_imatrix(m_last_chunk);
- }
+ }
+ }
+ // only 1 count in practice, except when a tensor is used for both MUL_MAT_ID and MUL_MAT
+ for (size_t i = 0; i < e.counts.size(); ++i) {
+ e.counts[i] += ggml_nrows(src1) / n_mat;
+ const int32_t n_chunk = e.counts[i] / chunk_size;
+ if (n_chunk > m_last_chunk) {
+ const int32_t chunk_step = n_chunk - m_last_chunk;
+ m_last_chunk = n_chunk;
+ if ((m_last_chunk % m_params.n_out_freq) / chunk_step == 0) {
+ save_imatrix();
+ }
+ if (m_params.n_save_freq > 0 && (m_last_chunk % m_params.n_save_freq) / chunk_step == 0) {
+ save_imatrix(m_last_chunk);
}
}
}