--- /dev/null
+#include <algorithm>
+#include <array>
+#include <cassert>
+#include <chrono>
+#include <cinttypes>
+#include <cstring>
+#include <ctime>
+#include <iterator>
+#include <map>
+#include <numeric>
+#include <regex>
+#include <sstream>
+#include <stdio.h>
+#include <string>
+#include <vector>
+
+#include "ggml.h"
+#include "llama.h"
+#include "common.h"
+#include "build-info.h"
+#ifdef GGML_USE_CUBLAS
+#include "ggml-cuda.h"
+#endif
+
+// utils
+static uint64_t get_time_ns() {
+ using clock = std::chrono::high_resolution_clock;
+ return std::chrono::nanoseconds(clock::now().time_since_epoch()).count();
+}
+
+template<class T>
+static std::string join(const std::vector<T> & values, const std::string & delim) {
+ std::ostringstream str;
+ for (size_t i = 0; i < values.size(); i++) {
+ str << values[i];
+ if (i < values.size() - 1) {
+ str << delim;
+ }
+ }
+ return str.str();
+}
+
+template<class T>
+static std::vector<T> split(const std::string & str, char delim) {
+ std::vector<T> values;
+ std::istringstream str_stream(str);
+ std::string token;
+ while (std::getline(str_stream, token, delim)) {
+ T value;
+ std::istringstream token_stream(token);
+ token_stream >> value;
+ values.push_back(value);
+ }
+ return values;
+}
+
+template<typename T>
+static T avg(const std::vector<T> & v) {
+ if (v.empty()) {
+ return 0;
+ }
+ T sum = std::accumulate(v.begin(), v.end(), T(0));
+ return sum / (T)v.size();
+}
+
+template<typename T>
+static T stdev(const std::vector<T> & v) {
+ if (v.size() <= 1) {
+ return 0;
+ }
+ T mean = avg(v);
+ T sq_sum = std::inner_product(v.begin(), v.end(), v.begin(), T(0));
+ T stdev = std::sqrt(sq_sum / (T)(v.size() - 1) - mean * mean * (T)v.size() / (T)(v.size() - 1));
+ return stdev;
+}
+
+static bool ggml_cpu_has_metal() {
+#if defined(GGML_USE_METAL)
+ return true;
+#else
+ return false;
+#endif
+}
+
+static std::string get_cpu_info() {
+ std::string id;
+#ifdef __linux__
+ FILE * f = fopen("/proc/cpuinfo", "r");
+ if (f) {
+ char buf[1024];
+ while (fgets(buf, sizeof(buf), f)) {
+ if (strncmp(buf, "model name", 10) == 0) {
+ char * p = strchr(buf, ':');
+ if (p) {
+ p++;
+ while (std::isspace(*p)) {
+ p++;
+ }
+ while (std::isspace(p[strlen(p) - 1])) {
+ p[strlen(p) - 1] = '\0';
+ }
+ id = p;
+ break;
+ }
+ }
+ }
+ }
+#endif
+ // TODO: other platforms
+ return id;
+}
+
+static std::string get_gpu_info() {
+ std::string id;
+#ifdef GGML_USE_CUBLAS
+ int count = ggml_cuda_get_device_count();
+ for (int i = 0; i < count; i++) {
+ char buf[128];
+ ggml_cuda_get_device_description(i, buf, sizeof(buf));
+ id += buf;
+ if (i < count - 1) {
+ id += "/";
+ }
+ }
+#endif
+ // TODO: other backends
+ return id;
+}
+
+// command line params
+enum output_formats {CSV, JSON, MARKDOWN, SQL};
+
+struct cmd_params {
+ std::vector<std::string> model;
+ std::vector<int> n_prompt;
+ std::vector<int> n_gen;
+ std::vector<int> n_batch;
+ std::vector<bool> f32_kv;
+ std::vector<int> n_threads;
+ std::vector<int> n_gpu_layers;
+ std::vector<int> main_gpu;
+ std::vector<bool> mul_mat_q;
+ std::vector<bool> low_vram;
+ std::vector<std::array<float, LLAMA_MAX_DEVICES>> tensor_split;
+ int reps;
+ bool verbose;
+ output_formats output_format;
+};
+
+static const cmd_params cmd_params_defaults = {
+ /* model */ {"models/7B/ggml-model-q4_0.bin"},
+ /* n_prompt */ {512},
+ /* n_gen */ {128},
+ /* n_batch */ {512},
+ /* f32_kv */ {false},
+ /* n_threads */ {get_num_physical_cores()},
+ /* n_gpu_layers */ {99},
+ /* main_gpu */ {0},
+ /* mul_mat_q */ {true},
+ /* low_vram */ {false},
+ /* tensor_split */ {{}},
+ /* reps */ 5,
+ /* verbose */ false,
+ /* output_format */ MARKDOWN
+};
+
+static void print_usage(int /* argc */, char ** argv) {
+ fprintf(stdout, "usage: %s [options]\n", argv[0]);
+ fprintf(stdout, "\n");
+ fprintf(stdout, "options:\n");
+ fprintf(stdout, " -h, --help\n");
+ fprintf(stdout, " -m, --model <filename> (default: %s)\n", join(cmd_params_defaults.model, ",").c_str());
+ fprintf(stdout, " -p, --n-prompt <n> (default: %s)\n", join(cmd_params_defaults.n_prompt, ",").c_str());
+ fprintf(stdout, " -n, --n-gen <n> (default: %s)\n", join(cmd_params_defaults.n_gen, ",").c_str());
+ fprintf(stdout, " -b, --batch-size <n> (default: %s)\n", join(cmd_params_defaults.n_batch, ",").c_str());
+ fprintf(stdout, " --memory-f32 <0|1> (default: %s)\n", join(cmd_params_defaults.f32_kv, ",").c_str());
+ fprintf(stdout, " -t, --threads <n> (default: %s)\n", join(cmd_params_defaults.n_threads, ",").c_str());
+ fprintf(stdout, " -ngl N, --n-gpu-layers <n> (default: %s)\n", join(cmd_params_defaults.n_gpu_layers, ",").c_str());
+ fprintf(stdout, " -mg i, --main-gpu <n> (default: %s)\n", join(cmd_params_defaults.main_gpu, ",").c_str());
+ fprintf(stdout, " -lv, --low-vram <0|1> (default: %s)\n", join(cmd_params_defaults.low_vram, ",").c_str());
+ fprintf(stdout, " -mmq, --mul-mat-q <0|1> (default: %s)\n", join(cmd_params_defaults.mul_mat_q, ",").c_str());
+ fprintf(stdout, " -ts, --tensor_split <ts> \n");
+ fprintf(stdout, " -r, --repetitions <n> (default: %d)\n", cmd_params_defaults.reps);
+ fprintf(stdout, " -o, --output <csv|json|md|sql> (default: %s)\n", cmd_params_defaults.output_format == CSV ? "csv" : cmd_params_defaults.output_format == JSON ? "json" : "md");
+ fprintf(stdout, " -v, --verbose (default: %s)\n", cmd_params_defaults.verbose ? "1" : "0");
+ fprintf(stdout, "\n");
+ fprintf(stdout, "Multiple values can be given for each parameter by separating them with ',' or by repeating the parameter.\n");
+
+}
+
+static cmd_params parse_cmd_params(int argc, char ** argv) {
+ cmd_params params;
+ std::string arg;
+ bool invalid_param = false;
+ const std::string arg_prefix = "--";
+ const char split_delim = ',';
+
+ params.verbose = cmd_params_defaults.verbose;
+ params.output_format = cmd_params_defaults.output_format;
+ params.reps = cmd_params_defaults.reps;
+
+ for (int i = 1; i < argc; i++) {
+ arg = argv[i];
+ if (arg.compare(0, arg_prefix.size(), arg_prefix) == 0) {
+ std::replace(arg.begin(), arg.end(), '_', '-');
+ }
+
+ if (arg == "-h" || arg == "--help") {
+ print_usage(argc, argv);
+ exit(0);
+ } else if (arg == "-m" || arg == "--model") {
+ if (++i >= argc) {
+ invalid_param = true;
+ break;
+ }
+ auto p = split<std::string>(argv[i], split_delim);
+ params.model.insert(params.model.end(), p.begin(), p.end());
+ } else if (arg == "-p" || arg == "--n-prompt") {
+ if (++i >= argc) {
+ invalid_param = true;
+ break;
+ }
+ auto p = split<int>(argv[i], split_delim);
+ params.n_prompt.insert(params.n_prompt.end(), p.begin(), p.end());
+ } else if (arg == "-n" || arg == "--n-gen") {
+ if (++i >= argc) {
+ invalid_param = true;
+ break;
+ }
+ auto p = split<int>(argv[i], split_delim);
+ params.n_gen.insert(params.n_gen.end(), p.begin(), p.end());
+ } else if (arg == "-b" || arg == "--batch-size") {
+ if (++i >= argc) {
+ invalid_param = true;
+ break;
+ }
+ auto p = split<int>(argv[i], split_delim);
+ params.n_batch.insert(params.n_batch.end(), p.begin(), p.end());
+ } else if (arg == "--memory-f32") {
+ if (++i >= argc) {
+ invalid_param = true;
+ break;
+ }
+ auto p = split<int>(argv[i], split_delim);
+ params.f32_kv.insert(params.f32_kv.end(), p.begin(), p.end());
+ } else if (arg == "-t" || arg == "--threads") {
+ if (++i >= argc) {
+ invalid_param = true;
+ break;
+ }
+ auto p = split<int>(argv[i], split_delim);
+ params.n_threads.insert(params.n_threads.end(), p.begin(), p.end());
+ } else if (arg == "-ngl" || arg == "--n-gpu-layers") {
+ if (++i >= argc) {
+ invalid_param = true;
+ break;
+ }
+ auto p = split<int>(argv[i], split_delim);
+ params.n_gpu_layers.insert(params.n_gpu_layers.end(), p.begin(), p.end());
+ } else if (arg == "-mg" || arg == "--main-gpu") {
+ if (++i >= argc) {
+ invalid_param = true;
+ break;
+ }
+ params.main_gpu = split<int>(argv[i], split_delim);
+ } else if (arg == "-lv" || arg == "--low-vram") {
+ if (++i >= argc) {
+ invalid_param = true;
+ break;
+ }
+ auto p = split<bool>(argv[i], split_delim);
+ params.low_vram.insert(params.low_vram.end(), p.begin(), p.end());
+ } else if (arg == "-mmq" || arg == "--mul-mat-q") {
+ if (++i >= argc) {
+ invalid_param = true;
+ break;
+ }
+ auto p = split<bool>(argv[i], split_delim);
+ params.mul_mat_q.insert(params.mul_mat_q.end(), p.begin(), p.end());
+ } else if (arg == "-ts" || arg == "--tensor-split") {
+ if (++i >= argc) {
+ invalid_param = true;
+ break;
+ }
+ for (auto ts : split<std::string>(argv[i], split_delim)) {
+ // split string by ; and /
+ const std::regex regex{R"([;/]+)"};
+ std::sregex_token_iterator it{ts.begin(), ts.end(), regex, -1};
+ std::vector<std::string> split_arg{it, {}};
+ GGML_ASSERT(split_arg.size() <= LLAMA_MAX_DEVICES);
+
+ std::array<float, LLAMA_MAX_DEVICES> tensor_split;
+ for (size_t i = 0; i < LLAMA_MAX_DEVICES; ++i) {
+ if (i < split_arg.size()) {
+ tensor_split[i] = std::stof(split_arg[i]);
+ } else {
+ tensor_split[i] = 0.0f;
+ }
+ }
+ params.tensor_split.push_back(tensor_split);
+ }
+ } else if (arg == "-r" || arg == "--repetitions") {
+ if (++i >= argc) {
+ invalid_param = true;
+ break;
+ }
+ params.reps = std::stoi(argv[i]);
+ } else if (arg == "-o" || arg == "--output") {
+ if (++i >= argc) {
+ invalid_param = true;
+ break;
+ }
+ if (argv[i] == std::string("csv")) {
+ params.output_format = CSV;
+ } else if (argv[i] == std::string("json")) {
+ params.output_format = JSON;
+ } else if (argv[i] == std::string("md")) {
+ params.output_format = MARKDOWN;
+ } else if (argv[i] == std::string("sql")) {
+ params.output_format = SQL;
+ } else {
+ invalid_param = true;
+ break;
+ }
+ } else if (arg == "-v" || arg == "--verbose") {
+ params.verbose = true;
+ } else {
+ invalid_param = true;
+ break;
+ }
+ }
+ if (invalid_param) {
+ fprintf(stderr, "error: invalid parameter for argument: %s\n", arg.c_str());
+ print_usage(argc, argv);
+ exit(1);
+ }
+
+ // set defaults
+ if (params.model.empty()) { params.model = cmd_params_defaults.model; }
+ if (params.n_prompt.empty()) { params.n_prompt = cmd_params_defaults.n_prompt; }
+ if (params.n_gen.empty()) { params.n_gen = cmd_params_defaults.n_gen; }
+ if (params.n_batch.empty()) { params.n_batch = cmd_params_defaults.n_batch; }
+ if (params.f32_kv.empty()) { params.f32_kv = cmd_params_defaults.f32_kv; }
+ if (params.n_gpu_layers.empty()) { params.n_gpu_layers = cmd_params_defaults.n_gpu_layers; }
+ if (params.main_gpu.empty()) { params.main_gpu = cmd_params_defaults.main_gpu; }
+ if (params.mul_mat_q.empty()) { params.mul_mat_q = cmd_params_defaults.mul_mat_q; }
+ if (params.low_vram.empty()) { params.low_vram = cmd_params_defaults.low_vram; }
+ if (params.tensor_split.empty()) { params.tensor_split = cmd_params_defaults.tensor_split; }
+ if (params.n_threads.empty()) { params.n_threads = cmd_params_defaults.n_threads; }
+
+ return params;
+}
+
+struct cmd_params_instance {
+ std::string model;
+ int n_prompt;
+ int n_gen;
+ int n_batch;
+ bool f32_kv;
+ int n_threads;
+ int n_gpu_layers;
+ int main_gpu;
+ bool mul_mat_q;
+ bool low_vram;
+ std::array<float, LLAMA_MAX_DEVICES> tensor_split;
+
+ llama_context_params to_llama_params() const {
+ llama_context_params lparams = llama_context_default_params();
+ lparams.n_ctx = n_prompt + n_gen;
+ lparams.n_batch = n_batch;
+ lparams.f16_kv = !f32_kv;
+ lparams.n_gpu_layers = n_gpu_layers;
+ lparams.main_gpu = main_gpu;
+ lparams.mul_mat_q = mul_mat_q;
+ lparams.low_vram = low_vram;
+ lparams.tensor_split = tensor_split.data();
+
+ return lparams;
+ }
+};
+
+static std::vector<cmd_params_instance> get_cmd_params_instances_int(const cmd_params & params, int n_gen, int n_prompt) {
+ std::vector<cmd_params_instance> instances;
+
+ for (const auto & m : params.model)
+ for (const auto & nb : params.n_batch)
+ for (const auto & fk : params.f32_kv)
+ for (const auto & nl : params.n_gpu_layers)
+ for (const auto & mg : params.main_gpu)
+ for (const auto & mmq : params.mul_mat_q)
+ for (const auto & lv : params.low_vram)
+ for (const auto & ts : params.tensor_split)
+ for (const auto & nt : params.n_threads) {
+ cmd_params_instance instance = {
+ /* .model = */ m,
+ /* .n_prompt = */ n_prompt,
+ /* .n_gen = */ n_gen,
+ /* .n_batch = */ nb,
+ /* .f32_kv = */ fk,
+ /* .n_threads = */ nt,
+ /* .n_gpu_layers = */ nl,
+ /* .main_gpu = */ mg,
+ /* .mul_mat_q = */ mmq,
+ /* .low_vram = */ lv,
+ /* .tensor_split = */ ts,
+ };
+ instances.push_back(instance);
+ }
+ return instances;
+}
+
+static std::vector<cmd_params_instance> get_cmd_params_instances(const cmd_params & params) {
+ std::vector<cmd_params_instance> instances;
+
+ for (const auto & n_prompt : params.n_prompt) {
+ if (n_prompt == 0) {
+ continue;
+ }
+ auto instances_prompt = get_cmd_params_instances_int(params, 0, n_prompt);
+ instances.insert(instances.end(), instances_prompt.begin(), instances_prompt.end());
+ }
+
+ for (const auto & n_gen : params.n_gen) {
+ if (n_gen == 0) {
+ continue;
+ }
+ auto instances_gen = get_cmd_params_instances_int(params, n_gen, 0);
+ instances.insert(instances.end(), instances_gen.begin(), instances_gen.end());
+ }
+
+ return instances;
+}
+
+struct test {
+ static const std::string build_commit;
+ static const int build_number;
+ static const bool cuda;
+ static const bool opencl;
+ static const bool metal;
+ static const bool gpu_blas;
+ static const bool blas;
+ static const std::string cpu_info;
+ static const std::string gpu_info;
+ std::string model_filename;
+ std::string model_type;
+ int n_batch;
+ int n_threads;
+ bool f32_kv;
+ int n_gpu_layers;
+ int main_gpu;
+ bool mul_mat_q;
+ bool low_vram;
+ std::array<float, LLAMA_MAX_DEVICES> tensor_split;
+ int n_prompt;
+ int n_gen;
+ std::string test_time;
+ std::vector<uint64_t> samples_ns;
+
+ test(const cmd_params_instance & inst, const llama_model * lmodel, const llama_context * ctx) {
+ model_filename = inst.model;
+ char buf[128];
+ llama_model_type(lmodel, buf, sizeof(buf));
+ model_type = buf;
+ n_batch = inst.n_batch;
+ n_threads = inst.n_threads;
+ f32_kv = inst.f32_kv;
+ n_gpu_layers = inst.n_gpu_layers;
+ main_gpu = inst.main_gpu;
+ mul_mat_q = inst.mul_mat_q;
+ low_vram = inst.low_vram;
+ tensor_split = inst.tensor_split;
+ n_prompt = inst.n_prompt;
+ n_gen = inst.n_gen;
+ // RFC 3339 date-time format
+ time_t t = time(NULL);
+ std::strftime(buf, sizeof(buf), "%FT%TZ", gmtime(&t));
+ test_time = buf;
+
+ (void) ctx;
+ }
+
+ uint64_t avg_ns() const {
+ return ::avg(samples_ns);
+ }
+
+ uint64_t stdev_ns() const {
+ return ::stdev(samples_ns);
+ }
+
+ std::vector<double> get_ts() const {
+ int n_tokens = n_prompt + n_gen;
+ std::vector<double> ts;
+ std::transform(samples_ns.begin(), samples_ns.end(), std::back_inserter(ts), [n_tokens](uint64_t t) { return 1e9 * n_tokens / t; });
+ return ts;
+ }
+
+ double avg_ts() const {
+ return ::avg(get_ts());
+ }
+
+ double stdev_ts() const {
+ return ::stdev(get_ts());
+ }
+
+ static std::string get_backend() {
+ if (cuda) {
+ return "CUDA";
+ }
+ if (opencl) {
+ return "OpenCL";
+ }
+ if (metal) {
+ return "Metal";
+ }
+ if (gpu_blas) {
+ return "GPU BLAS";
+ }
+ if (blas) {
+ return "BLAS";
+ }
+ return "CPU";
+ }
+
+ static const std::vector<std::string> & get_fields() {
+ static const std::vector<std::string> fields = {
+ "build_commit", "build_number",
+ "cuda", "opencl", "metal", "gpu_blas", "blas",
+ "cpu_info", "gpu_info",
+ "model_filename", "model_type",
+ "n_batch", "n_threads", "f16_kv",
+ "n_gpu_layers", "main_gpu", "mul_mat_q", "low_vram", "tensor_split",
+ "n_prompt", "n_gen", "test_time",
+ "avg_ns", "stddev_ns",
+ "avg_ts", "stddev_ts"
+ };
+ return fields;
+ }
+
+ enum field_type {STRING, BOOL, INT, FLOAT};
+
+ static field_type get_field_type(const std::string & field) {
+ if (field == "build_number" || field == "n_batch" || field == "n_threads" ||
+ field == "n_gpu_layers" || field == "main_gpu" ||
+ field == "n_prompt" || field == "n_gen" ||
+ field == "avg_ns" || field == "stddev_ns") {
+ return INT;
+ }
+ if (field == "cuda" || field == "opencl" || field == "metal" || field == "gpu_blas" || field == "blas" ||
+ field == "f16_kv" || field == "mul_mat_q" || field == "low_vram") {
+ return BOOL;
+ }
+ if (field == "avg_ts" || field == "stddev_ts") {
+ return FLOAT;
+ }
+ return STRING;
+ }
+
+ std::vector<std::string> get_values() const {
+ std::string tensor_split_str;
+ int max_nonzero = 0;
+ for (int i = 0; i < LLAMA_MAX_DEVICES; i++) {
+ if (tensor_split[i] > 0) {
+ max_nonzero = i;
+ }
+ }
+ for (int i = 0; i <= max_nonzero; i++) {
+ char buf[32];
+ snprintf(buf, sizeof(buf), "%.2f", tensor_split[i]);
+ tensor_split_str += buf;
+ if (i < max_nonzero) {
+ tensor_split_str += "/";
+ }
+ }
+ std::vector<std::string> values = {
+ build_commit, std::to_string(build_number),
+ std::to_string(cuda), std::to_string(opencl), std::to_string(metal), std::to_string(gpu_blas), std::to_string(blas),
+ cpu_info, gpu_info,
+ model_filename, model_type,
+ std::to_string(n_batch), std::to_string(n_threads), std::to_string(!f32_kv),
+ std::to_string(n_gpu_layers), std::to_string(main_gpu), std::to_string(mul_mat_q), std::to_string(low_vram), tensor_split_str,
+ std::to_string(n_prompt), std::to_string(n_gen), test_time,
+ std::to_string(avg_ns()), std::to_string(stdev_ns()),
+ std::to_string(avg_ts()), std::to_string(stdev_ts())
+ };
+ return values;
+ }
+
+ std::map<std::string, std::string> get_map() const {
+ std::map<std::string, std::string> map;
+ auto fields = get_fields();
+ auto values = get_values();
+ std::transform(fields.begin(), fields.end(), values.begin(),
+ std::inserter(map, map.end()), std::make_pair<const std::string &, const std::string &>);
+ return map;
+ }
+};
+
+const std::string test::build_commit = BUILD_COMMIT;
+const int test::build_number = BUILD_NUMBER;
+const bool test::cuda = !!ggml_cpu_has_cublas();
+const bool test::opencl = !!ggml_cpu_has_clblast();
+const bool test::metal = !!ggml_cpu_has_metal();
+const bool test::gpu_blas = !!ggml_cpu_has_gpublas();
+const bool test::blas = !!ggml_cpu_has_blas();
+const std::string test::cpu_info = get_cpu_info();
+const std::string test::gpu_info = get_gpu_info();
+
+struct printer {
+ FILE * fout;
+ virtual void print_header(const cmd_params & params) { (void) params; };
+ virtual void print_test(const test & t) = 0;
+ virtual void print_footer() { };
+};
+
+struct csv_printer : public printer {
+ static std::string escape_csv(const std::string & field) {
+ std::string escaped = "\"";
+ for (auto c : field) {
+ if (c == '"') {
+ escaped += "\"";
+ }
+ escaped += c;
+ }
+ escaped += "\"";
+ return escaped;
+ }
+
+ void print_header(const cmd_params & params) override {
+ std::vector<std::string> fields = test::get_fields();
+ fprintf(fout, "%s\n", join(fields, ",").c_str());
+ (void) params;
+ }
+
+ void print_test(const test & t) override {
+ std::vector<std::string> values = t.get_values();
+ std::transform(values.begin(), values.end(), values.begin(), escape_csv);
+ fprintf(fout, "%s\n", join(values, ",").c_str());
+ }
+};
+
+struct json_printer : public printer {
+ bool first = true;
+
+ static std::string escape_json(const std::string & value) {
+ std::string escaped;
+ for (auto c : value) {
+ if (c == '"') {
+ escaped += "\\\"";
+ } else if (c == '\\') {
+ escaped += "\\\\";
+ } else if (c <= 0x1f) {
+ char buf[8];
+ snprintf(buf, sizeof(buf), "\\u%04x", c);
+ escaped += buf;
+ } else {
+ escaped += c;
+ }
+ }
+ return escaped;
+ }
+
+ static std::string format_value(const std::string & field, const std::string & value) {
+ switch (test::get_field_type(field)) {
+ case test::STRING:
+ return "\"" + escape_json(value) + "\"";
+ case test::BOOL:
+ return value == "0" ? "false" : "true";
+ default:
+ return value;
+ }
+ }
+
+ void print_header(const cmd_params & params) override {
+ fprintf(fout, "[\n");
+ (void) params;
+ }
+
+ void print_fields(const std::vector<std::string> & fields, const std::vector<std::string> & values) {
+ assert(fields.size() == values.size());
+ for (size_t i = 0; i < fields.size(); i++) {
+ fprintf(fout, " \"%s\": %s,\n", fields.at(i).c_str(), format_value(fields.at(i), values.at(i)).c_str());
+ }
+ }
+
+ void print_test(const test & t) override {
+ if (first) {
+ first = false;
+ } else {
+ fprintf(fout, ",\n");
+ }
+ fprintf(fout, " {\n");
+ print_fields(test::get_fields(), t.get_values());
+ fprintf(fout, " \"samples_ns\": [ %s ],\n", join(t.samples_ns, ", ").c_str());
+ fprintf(fout, " \"samples_ts\": [ %s ]\n", join(t.get_ts(), ", ").c_str());
+ fprintf(fout, " }");
+ fflush(fout);
+ }
+
+ void print_footer() override {
+ fprintf(fout, "\n]\n");
+ }
+};
+
+struct markdown_printer : public printer {
+ std::vector<std::string> fields;
+
+ static int get_field_width(const std::string & field) {
+ if (field == "model") {
+ return -30;
+ }
+ if (field == "t/s") {
+ return 15;
+ }
+ int width = std::max((int)field.length(), 10);
+
+ if (test::get_field_type(field) == test::STRING) {
+ return -width;
+ }
+ return width;
+ }
+
+ void print_header(const cmd_params & params) override {
+ // select fields to print
+ fields = { "model", "backend" };
+ bool is_cpu_backend = test::get_backend() == "CPU" || test::get_backend() == "BLAS";
+ if (!is_cpu_backend) {
+ fields.push_back("n_gpu_layers");
+ }
+ if (params.n_batch.size() > 1 || params.n_threads != cmd_params_defaults.n_threads || is_cpu_backend) {
+ fields.push_back("n_threads");
+ }
+ if (params.n_batch.size() > 1 || params.n_batch != cmd_params_defaults.n_batch) {
+ fields.push_back("n_batch");
+ }
+ if (params.f32_kv.size() > 1 || params.f32_kv != cmd_params_defaults.f32_kv) {
+ fields.push_back("f16_kv");
+ }
+ if (params.main_gpu.size() > 1 || params.main_gpu != cmd_params_defaults.main_gpu) {
+ fields.push_back("main_gpu");
+ }
+ if (params.mul_mat_q.size() > 1 || params.mul_mat_q != cmd_params_defaults.mul_mat_q) {
+ fields.push_back("mul_mat_q");
+ }
+ if (params.low_vram.size() > 1 || params.low_vram != cmd_params_defaults.low_vram) {
+ fields.push_back("low_vram");
+ }
+ if (params.tensor_split.size() > 1 || params.tensor_split != cmd_params_defaults.tensor_split) {
+ fields.push_back("tensor_split");
+ }
+ fields.push_back("test");
+ fields.push_back("t/s");
+
+ fprintf(fout, "|");
+ for (const auto & field : fields) {
+ fprintf(fout, " %*s |", get_field_width(field), field.c_str());
+ }
+ fprintf(fout, "\n");
+ fprintf(fout, "|");
+ for (const auto & field : fields) {
+ int width = get_field_width(field);
+ fprintf(fout, " %s%s |", std::string(std::abs(width) - 1, '-').c_str(), width > 0 ? ":" : "-");
+ }
+ fprintf(fout, "\n");
+ }
+
+ void print_test(const test & t) override {
+ std::map<std::string, std::string> vmap = t.get_map();
+
+ fprintf(fout, "|");
+ for (const auto & field : fields) {
+ std::string value;
+ if (field == "model") {
+ value = t.model_type;
+ } else if (field == "backend") {
+ value = test::get_backend();
+ } else if (field == "test") {
+ char buf[128];
+ if (t.n_prompt > 0 && t.n_gen == 0) {
+ snprintf(buf, sizeof(buf), "pp %d", t.n_prompt);
+ } else if (t.n_gen > 0 && t.n_prompt == 0) {
+ snprintf(buf, sizeof(buf), "tg %d", t.n_gen);
+ } else {
+ assert(false);
+ exit(1);
+ }
+ value = buf;
+ } else if (field == "t/s") {
+ char buf[128];
+ snprintf(buf, sizeof(buf), "%.2f ± %.2f", t.avg_ts(), t.stdev_ts());
+ value = buf;
+ } else if (vmap.find(field) != vmap.end()) {
+ value = vmap.at(field);
+ } else {
+ assert(false);
+ exit(1);
+ }
+
+ int width = get_field_width(field);
+ if (field == "t/s") {
+ // HACK: the utf-8 character is 2 bytes
+ width += 1;
+ }
+ fprintf(fout, " %*s |", width, value.c_str());
+ }
+ fprintf(fout, "\n");
+ }
+
+ void print_footer() override {
+ fprintf(fout, "\nbuild: %s (%d)\n", test::build_commit.c_str(), test::build_number);
+ }
+};
+
+struct sql_printer : public printer {
+ static std::string get_sql_field_type(const std::string & field) {
+ switch (test::get_field_type(field)) {
+ case test::STRING:
+ return "TEXT";
+ case test::BOOL:
+ case test::INT:
+ return "INTEGER";
+ case test::FLOAT:
+ return "REAL";
+ default:
+ assert(false);
+ exit(1);
+ }
+ }
+
+ void print_header(const cmd_params & params) override {
+ std::vector<std::string> fields = test::get_fields();
+ fprintf(fout, "CREATE TABLE IF NOT EXISTS test (\n");
+ for (size_t i = 0; i < fields.size(); i++) {
+ fprintf(fout, " %s %s%s\n", fields.at(i).c_str(), get_sql_field_type(fields.at(i)).c_str(), i < fields.size() - 1 ? "," : "");
+ }
+ fprintf(fout, ");\n");
+ fprintf(fout, "\n");
+ (void) params;
+ }
+
+ void print_test(const test & t) override {
+ fprintf(fout, "INSERT INTO test (%s) ", join(test::get_fields(), ", ").c_str());
+ fprintf(fout, "VALUES (");
+ std::vector<std::string> values = t.get_values();
+ for (size_t i = 0; i < values.size(); i++) {
+ fprintf(fout, "'%s'%s", values.at(i).c_str(), i < values.size() - 1 ? ", " : "");
+ }
+ fprintf(fout, ");\n");
+ }
+};
+
+static void test_prompt(llama_context * ctx, int n_prompt, int n_past, int n_batch, int n_threads) {
+ std::vector<llama_token> tokens(n_batch, llama_token_bos());
+ int n_processed = 0;
+ while (n_processed < n_prompt) {
+ int n_tokens = std::min(n_prompt - n_processed, n_batch);
+ llama_eval(ctx, tokens.data(), n_tokens, n_past + n_processed, n_threads);
+ n_processed += n_tokens;
+ }
+}
+
+static void test_gen(llama_context * ctx, int n_gen, int n_past, int n_threads) {
+ llama_token token = llama_token_bos();
+ for (int i = 0; i < n_gen; i++) {
+ llama_eval(ctx, &token, 1, n_past + i, n_threads);
+ }
+}
+
+static void llama_null_log_callback(enum llama_log_level level, const char * text, void * user_data) {
+ (void) level;
+ (void) text;
+ (void) user_data;
+}
+
+int main(int argc, char ** argv) {
+#if !defined(NDEBUG)
+ fprintf(stderr, "warning: asserts enabled, performance may be affected\n");
+#endif
+
+#if (defined(_MSC_VER) && defined(_DEBUG)) || (!defined(_MSC_VER) && !defined(__OPTIMIZE__))
+ fprintf(stderr, "warning: debug build, performance may be affected\n");
+#endif
+
+#if defined(__SANITIZE_ADDRESS__) || defined(__SANITIZE_THREAD__)
+ fprintf(stderr, "warning: sanitizer enabled, performance may be affected\n");
+#endif
+
+ cmd_params params = parse_cmd_params(argc, argv);
+
+ // initialize llama.cpp
+ if (!params.verbose) {
+ llama_log_set(llama_null_log_callback, NULL);
+ }
+ bool numa = false;
+ llama_backend_init(numa);
+
+ // initialize printer
+ std::unique_ptr<printer> p;
+ switch (params.output_format) {
+ case CSV:
+ p.reset(new csv_printer());
+ break;
+ case JSON:
+ p.reset(new json_printer());
+ break;
+ case MARKDOWN:
+ p.reset(new markdown_printer());
+ break;
+ case SQL:
+ p.reset(new sql_printer());
+ break;
+ default:
+ assert(false);
+ exit(1);
+ }
+ p->fout = stdout;
+ p->print_header(params);
+
+ std::vector<cmd_params_instance> params_instances = get_cmd_params_instances(params);
+
+ for (const auto & inst : params_instances) {
+ // TODO: keep the model between tests when possible
+ llama_context_params lparams = inst.to_llama_params();
+
+ llama_model * lmodel = llama_load_model_from_file(inst.model.c_str(), lparams);
+ if (lmodel == NULL) {
+ fprintf(stderr, "%s: error: failed to load model '%s'\n", __func__, inst.model.c_str());
+ return 1;
+ }
+
+ llama_context * ctx = llama_new_context_with_model(lmodel, lparams);
+ if (ctx == NULL) {
+ fprintf(stderr, "%s: error: failed to create context with model '%s'\n", __func__, inst.model.c_str());
+ llama_free_model(lmodel);
+ return 1;
+ }
+
+ test t(inst, lmodel, ctx);
+
+ // warmup run
+ test_gen(ctx, 1, 0, t.n_threads);
+
+ for (int i = 0; i < params.reps; i++) {
+ uint64_t t_start = get_time_ns();
+ if (t.n_prompt > 0) {
+ test_prompt(ctx, t.n_prompt, 0, t.n_batch, t.n_threads);
+ }
+ if (t.n_gen > 0) {
+ test_gen(ctx, t.n_gen, t.n_prompt, t.n_threads);
+ }
+ uint64_t t_ns = get_time_ns() - t_start;
+ t.samples_ns.push_back(t_ns);
+ }
+
+ p->print_test(t);
+
+ llama_print_timings(ctx);
+
+ llama_free(ctx);
+ llama_free_model(lmodel);
+ }
+
+ p->print_footer();
+
+ llama_backend_free();
+
+ return 0;
+}