]> git.djapps.eu Git - pkg/ggml/sources/llama.cpp/commitdiff
feature : add blis and other BLAS implementation support (#1502)
authorZenix <redacted>
Sat, 20 May 2023 09:02:48 +0000 (18:02 +0900)
committerGitHub <redacted>
Sat, 20 May 2023 09:02:48 +0000 (12:02 +0300)
* feature: add blis support

* feature: allow all BLA_VENDOR to be assigned in cmake arguments. align with whisper.cpp pr 927

* fix: version detection for BLA_SIZEOF_INTEGER, recover min version of cmake

* Fix typo in INTEGER

Co-authored-by: Georgi Gerganov <redacted>
---------

Co-authored-by: Georgi Gerganov <redacted>
BLIS.md [new file with mode: 0644]
CMakeLists.txt
Makefile
README.md

diff --git a/BLIS.md b/BLIS.md
new file mode 100644 (file)
index 0000000..9b3c306
--- /dev/null
+++ b/BLIS.md
@@ -0,0 +1,67 @@
+BLIS Installation Manual
+------------------------
+
+BLIS is a portable software framework for high-performance BLAS-like dense linear algebra libraries. It has received awards and recognition, including the 2023 James H. Wilkinson Prize for Numerical Software and the 2020 SIAM Activity Group on Supercomputing Best Paper Prize. BLIS provides a new BLAS-like API and a compatibility layer for traditional BLAS routine calls. It offers features such as object-based API, typed API, BLAS and CBLAS compatibility layers.
+
+Project URL: https://github.com/flame/blis
+
+### Prepare:
+
+Compile BLIS:
+
+```bash
+git clone https://github.com/flame/blis
+cd blis
+./configure --enable-cblas -t openmp,pthreads auto
+# will install to /usr/local/ by default.
+make -j
+```
+
+Install BLIS:
+
+```bash
+sudo make install
+```
+
+We recommend using openmp since it's easier to modify the cores been used.
+
+### llama.cpp compilation
+
+Makefile:
+
+```bash
+make LLAMA_BLIS=1 -j
+# make LLAMA_BLIS=1 benchmark-matmult
+```
+
+CMake:
+
+```bash
+mkdir build
+cd build
+cmake -DLLAMA_BLAS=ON -DLLAMA_BLAS_VENDOR=FLAME ..
+make -j
+```
+
+### llama.cpp execution
+
+According to the BLIS documentation, we could set the following
+environment variables to modify the behavior of openmp:
+
+```
+export GOMP_GPU_AFFINITY="0-19"
+export BLIS_NUM_THREADS=14
+```
+
+And then run the binaries as normal.
+
+
+### Intel specific issue
+
+Some might get the error message saying that `libimf.so` cannot be found.
+Please follow this [stackoverflow page](https://stackoverflow.com/questions/70687930/intel-oneapi-2022-libimf-so-no-such-file-or-directory-during-openmpi-compila).
+
+### Reference:
+
+1. https://github.com/flame/blis#getting-started
+2. https://github.com/flame/blis/blob/master/docs/Multithreading.md
index 48e3238dfa52e44706f39ae07b3322c85676cb53..0876ab90a2208f3d832682e3f45cfe70e36c1419 100644 (file)
@@ -65,7 +65,8 @@ endif()
 
 # 3rd party libs
 option(LLAMA_ACCELERATE             "llama: enable Accelerate framework"                    ON)
-option(LLAMA_OPENBLAS               "llama: use OpenBLAS"                                   OFF)
+option(LLAMA_BLAS                   "llama: use BLAS"                                       OFF)
+option(LLAMA_BLAS_VENDOR            "llama: BLA_VENDOR from https://cmake.org/cmake/help/latest/module/FindBLAS.html#blas-lapack-vendors" Generic)
 option(LLAMA_CUBLAS                 "llama: use cuBLAS"                                     OFF)
 option(LLAMA_CLBLAST                "llama: use CLBlast"                                    OFF)
 
@@ -145,36 +146,28 @@ if (APPLE AND LLAMA_ACCELERATE)
     endif()
 endif()
 
-if (LLAMA_OPENBLAS)
+if (LLAMA_BLAS)
     if (LLAMA_STATIC)
         set(BLA_STATIC ON)
     endif()
-
-    set(BLA_VENDOR OpenBLAS)
+    if ($(CMAKE_VERSION) VERSION_GREATER_EQUAL 3.22)
+        set(BLA_SIZEOF_INTEGER 8)
+    endif()
+    set(BLA_VENDOR ${LLAMA_BLAS_VENDOR})
     find_package(BLAS)
     if (BLAS_FOUND)
-        message(STATUS "OpenBLAS found")
+        message(STATUS "BLAS found, Libraries: ${BLAS_LIBRARIES}")
 
+       add_compile_options(${BLAS_LINKER_FLAGS})
         add_compile_definitions(GGML_USE_OPENBLAS)
-        add_link_options(${BLAS_LIBRARIES})
-        set(LLAMA_EXTRA_LIBS ${LLAMA_EXTRA_LIBS} openblas)
-
-        # find header file
-        set(OPENBLAS_INCLUDE_SEARCH_PATHS
-            /usr/include
-            /usr/include/openblas
-            /usr/include/openblas-base
-            /usr/local/include
-            /usr/local/include/openblas
-            /usr/local/include/openblas-base
-            /opt/OpenBLAS/include
-            $ENV{OpenBLAS_HOME}
-            $ENV{OpenBLAS_HOME}/include
-            )
-        find_path(OPENBLAS_INC NAMES cblas.h PATHS ${OPENBLAS_INCLUDE_SEARCH_PATHS})
-        add_compile_options(-I${OPENBLAS_INC})
+        set(LLAMA_EXTRA_LIBS ${LLAMA_EXTRA_LIBS} ${BLAS_LIBRARIES})
+
+        message("${BLAS_LIBRARIES}")
+        include_directories(${BLAS_INCLUDE_DIRS})
     else()
-        message(WARNING "OpenBLAS not found")
+        message(WARNING "BLAS not found, please refer to "
+       "https://cmake.org/cmake/help/latest/module/FindBLAS.html#blas-lapack-vendors"
+       " to set correct LLAMA_BLAS_VENDOR")
     endif()
 endif()
 
index f9ec8797a40dcd355d00e18c9d28a0f472db5cb6..cefa0b4a5dc6f371557b601108994da811a57e9e 100644 (file)
--- a/Makefile
+++ b/Makefile
@@ -122,6 +122,10 @@ ifdef LLAMA_OPENBLAS
                LDFLAGS += -lopenblas
        endif
 endif
+ifdef LLAMA_BLIS
+       CFLAGS += -DGGML_USE_OPENBLAS -I/usr/local/include/blis -I/usr/include/blis
+       LDFLAGS += -lblis -L/usr/local/lib
+endif
 ifdef LLAMA_CUBLAS
        CFLAGS    += -DGGML_USE_CUBLAS -I/usr/local/cuda/include -I/opt/cuda/include -I$(CUDA_PATH)/targets/x86_64-linux/include
        CXXFLAGS  += -DGGML_USE_CUBLAS -I/usr/local/cuda/include -I/opt/cuda/include -I$(CUDA_PATH)/targets/x86_64-linux/include
index 762f4aa0349e564fe9843e0955fc55b47242e97a..102cde43fb4571e4ebfdb7d7a6720fc467412f78 100644 (file)
--- a/README.md
+++ b/README.md
@@ -56,7 +56,7 @@ The main goal of `llama.cpp` is to run the LLaMA model using 4-bit integer quant
 - Mixed F16 / F32 precision
 - 4-bit, 5-bit and 8-bit integer quantization support
 - Runs on the CPU
-- OpenBLAS support
+- Supports OpenBLAS/Apple BLAS/ARM Performance Lib/ATLAS/BLIS/Intel MKL/NVHPC/ACML/SCSL/SGIMATH and [more](https://cmake.org/cmake/help/latest/module/FindBLAS.html#blas-lapack-vendors) in BLAS
 - cuBLAS and CLBlast support
 
 The original implementation of `llama.cpp` was [hacked in an evening](https://github.com/ggerganov/llama.cpp/issues/33#issuecomment-1465108022).
@@ -274,10 +274,25 @@ Building the program with BLAS support may lead to some performance improvements
       ```bash
       mkdir build
       cd build
-      cmake .. -DLLAMA_OPENBLAS=ON
+      cmake .. -DLLAMA_BLAS=ON -DLLAMA_BLAS_VENDOR=OpenBLAS
       cmake --build . --config Release
       ```
 
+- BLIS
+
+  Check [BLIS.md](BLIS.md) for more information.
+
+- Intel MKL
+
+  By default, `LLAMA_BLAS_VENDOR` is set to `Generic`, so if you already sourced intel environment script and assign `-DLLAMA_BLAS=ON` in cmake, the mkl version of Blas will automatically been selected. You may also specify it by:
+
+  ```bash
+  mkdir build
+  cd build
+  cmake .. -DLLAMA_BLAS=ON -DLLAMA_BLAS_VENDOR=Intel10_64lp -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icpx
+  cmake --build . -config Release
+  ```
+
 - cuBLAS
 
   This provides BLAS acceleration using the CUDA cores of your Nvidia GPU. Make sure to have the CUDA toolkit installed. You can download it from your Linux distro's package manager or from here: [CUDA Toolkit](https://developer.nvidia.com/cuda-downloads).