LLM_ARCH_COMMAND_R,
LLM_ARCH_DBRX,
LLM_ARCH_OLMO,
+ LLM_ARCH_OLMO_1124,
LLM_ARCH_OLMOE,
LLM_ARCH_OPENELM,
LLM_ARCH_ARCTIC,
{ LLM_ARCH_COMMAND_R, "command-r" },
{ LLM_ARCH_DBRX, "dbrx" },
{ LLM_ARCH_OLMO, "olmo" },
+ { LLM_ARCH_OLMO_1124, "olmo_1124" },
{ LLM_ARCH_OLMOE, "olmoe" },
{ LLM_ARCH_OPENELM, "openelm" },
{ LLM_ARCH_ARCTIC, "arctic" },
{ LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
},
},
+ {
+ LLM_ARCH_OLMO_1124,
+ {
+ { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
+ { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
+ { LLM_TENSOR_OUTPUT, "output" },
+ { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
+ { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
+ { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
+ { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
+ { LLM_TENSOR_ATTN_POST_NORM, "blk.%d.post_attention_norm" },
+ { LLM_TENSOR_ATTN_Q_NORM, "blk.%d.attn_q_norm" },
+ { LLM_TENSOR_ATTN_K_NORM, "blk.%d.attn_k_norm" },
+ { LLM_TENSOR_FFN_POST_NORM, "blk.%d.post_ffw_norm" },
+ { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
+ { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
+ { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
+ },
+ },
{
LLM_ARCH_OLMOE,
{
// for quantize-stats only
std::vector<std::pair<std::string, struct ggml_tensor *>> tensors_by_name;
- int64_t t_load_us = 0;
+ int64_t t_load_us = 0;
int64_t t_start_us = 0;
+ // total number of parameters in the model
+ uint64_t n_elements = 0;
+
+ // total size of all the tensors in the model in bytes
+ size_t n_bytes = 0;
+
// keep track of loaded lora adapters
std::set<struct llama_lora_adapter *> lora_adapters;
const uint32_t n_embd_k_gqa = hparams.n_embd_k_gqa(i) + hparams.n_embd_k_s();
const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa(i) + hparams.n_embd_v_s();
- const llama_model::buft_list_t * buft_list;
+ ggml_backend_buffer_type_t buft;
if (offload) {
- buft_list = model.dev_layer.at(i).buft_list;
+ auto * dev = model.dev_layer.at(i).dev;
+ buft = ggml_backend_dev_buffer_type(dev);
} else {
- buft_list = &model.cpu_buft_list;
+ buft = ggml_backend_cpu_buffer_type();
}
- ggml_backend_buffer_type_t buft = select_buft(*buft_list,
- [&](ggml_context * ctx) {
- ggml_tensor * k = ggml_new_tensor_1d(ctx, type_k, n_embd_k_gqa*kv_size);
- if (hparams.rope_type == LLAMA_ROPE_TYPE_NONE) {
- return k;
- }
- ggml_tensor * p = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 1);
- return ggml_rope(ctx, k, p, hparams.n_rot, hparams.rope_type);
- });
ggml_context * ctx = ctx_for_buft(buft);
if (!ctx) {
int n_tensors = 0;
int n_created = 0;
- int64_t n_elements = 0;
- size_t n_bytes = 0;
+ uint64_t n_elements = 0;
+ size_t n_bytes = 0;
bool use_mmap = false;
bool check_tensors;
}
}
+static void llm_load_stats(llama_model_loader & ml, llama_model & model) {
+ model.n_elements = ml.n_elements;
+ model.n_bytes = ml.n_bytes;
+}
+
static void llm_load_arch(llama_model_loader & ml, llama_model & model) {
model.arch = ml.get_arch();
if (model.arch == LLM_ARCH_UNKNOWN) {
default: model.type = e_model::MODEL_UNKNOWN;
}
} break;
+ case LLM_ARCH_OLMO_1124:
+ {
+ ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
+
+ switch (hparams.n_layer) {
+ case 16: model.type = e_model::MODEL_1B; break;
+ case 32: model.type = e_model::MODEL_7B; break;
+ case 40: model.type = e_model::MODEL_13B; break;
+ default: model.type = e_model::MODEL_UNKNOWN;
+ }
+ } break;
case LLM_ARCH_OLMOE:
{
ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
auto * cpu_dev = ggml_backend_dev_by_type(GGML_BACKEND_DEVICE_TYPE_CPU);
auto * cpu_reg = ggml_backend_dev_backend_reg(cpu_dev);
auto ggml_backend_dev_get_extra_bufts_fn = (ggml_backend_dev_get_extra_bufts_t)
- ggml_backend_reg_get_proc_address(cpu_reg, "ggml_backend_cpu_get_extra_bufts");
+ ggml_backend_reg_get_proc_address(cpu_reg, "ggml_backend_dev_get_extra_bufts");
if (ggml_backend_dev_get_extra_bufts_fn) {
ggml_backend_buffer_type_t * extra_bufts = ggml_backend_dev_get_extra_bufts_fn(cpu_dev);
while (extra_bufts && *extra_bufts) {
// avoid using a host buffer when using mmap
auto * buft_dev = ggml_backend_buft_get_device(buft);
- if (ml.use_mmap && buft == ggml_backend_dev_host_buffer_type(buft_dev)) {
+ if (ml.use_mmap && buft_dev && buft == ggml_backend_dev_host_buffer_type(buft_dev)) {
auto * cpu_dev = ggml_backend_dev_by_type(GGML_BACKEND_DEVICE_TYPE_CPU);
buft = ggml_backend_dev_buffer_type(cpu_dev);
}
layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
}
} break;
+ case LLM_ARCH_OLMO_1124:
+ {
+ model.tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
+
+ // output
+ model.output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
+ model.output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);
+
+ for (int i = 0; i < n_layer; ++i) {
+ auto & layer = model.layers[i];
+
+ layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0);
+ layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0);
+ layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0);
+ layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
+ layer.attn_q_norm = create_tensor(tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {n_embd}, 0);
+ layer.attn_k_norm = create_tensor(tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {n_embd}, 0);
+ layer.attn_post_norm = create_tensor(tn(LLM_TENSOR_ATTN_POST_NORM, "weight", i), {n_embd}, 0);
+
+ layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
+ layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
+ layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
+ layer.ffn_post_norm = create_tensor(tn(LLM_TENSOR_FFN_POST_NORM, "weight", i), {n_embd}, 0);
+ }
+ } break;
case LLM_ARCH_OLMOE:
{
model.tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
// check if it is possible to use buffer_from_host_ptr with this buffer type
ggml_backend_dev_t dev = ggml_backend_buft_get_device(buft);
+ if (!dev) {
+ // FIXME: workaround for CPU backend buft having a NULL device
+ dev = ggml_backend_reg_dev_get(ggml_backend_cpu_reg(), 0);
+ }
ggml_backend_dev_props props;
ggml_backend_dev_get_props(dev, &props);
bool buffer_from_host_ptr_supported = props.caps.buffer_from_host_ptr;
throw std::runtime_error("error loading model vocabulary: " + std::string(e.what()));
}
+ llm_load_stats(ml, model);
llm_load_print_meta(ml, model);
if (model.vocab.type != LLAMA_VOCAB_TYPE_NONE &&
return gf;
}
+ struct ggml_cgraph * build_olmo_1124() {
+ struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, llama_model_max_nodes(model), false);
+
+ // mutable variable, needed during the last layer of the computation to skip unused tokens
+ int32_t n_tokens = this->n_tokens;
+
+ const int64_t n_embd_head = hparams.n_embd_head_v;
+ GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
+ GGML_ASSERT(n_embd_head == hparams.n_rot);
+
+ struct ggml_tensor * cur;
+ struct ggml_tensor * inpL;
+
+ inpL = llm_build_inp_embd(ctx0, lctx, hparams, ubatch, model.tok_embd, cb);
+
+ // inp_pos - contains the positions
+ struct ggml_tensor * inp_pos = build_inp_pos();
+
+ // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
+ struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
+
+ for (int il = 0; il < n_layer; ++il) {
+ struct ggml_tensor * inpSA = inpL;
+
+ cur = inpL;
+
+ // self_attention
+ {
+ // compute Q and K and RoPE them
+ struct ggml_tensor * Qcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wq, cur);
+ cb(Qcur, "Qcur", il);
+
+ struct ggml_tensor * Kcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wk, cur);
+ cb(Kcur, "Kcur", il);
+
+ struct ggml_tensor * Vcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wv, cur);
+ cb(Vcur, "Vcur", il);
+
+ Qcur = llm_build_norm(ctx0, Qcur, hparams, model.layers[il].attn_q_norm, NULL,
+ LLM_NORM_RMS, cb, il);
+ cb(Qcur, "Qcur_normed", il);
+
+ Kcur = llm_build_norm(ctx0, Kcur, hparams, model.layers[il].attn_k_norm, NULL,
+ LLM_NORM_RMS, cb, il);
+ cb(Kcur, "Kcur_normed", il);
+
+ Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
+ Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
+
+ Qcur = ggml_rope_ext(
+ ctx0, Qcur, inp_pos, nullptr,
+ n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
+ ext_factor, attn_factor, beta_fast, beta_slow
+ );
+ cb(Qcur, "Qcur_rope", il);
+
+ Kcur = ggml_rope_ext(
+ ctx0, Kcur, inp_pos, nullptr,
+ n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
+ ext_factor, attn_factor, beta_fast, beta_slow
+ );
+ cb(Kcur, "Kcur_rope", il);
+
+ cur = llm_build_kv(ctx0, lctx, kv_self, gf,
+ model.layers[il].wo, NULL,
+ Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
+ }
+
+ cur = llm_build_norm(ctx0, cur, hparams,
+ model.layers[il].attn_post_norm, NULL,
+ LLM_NORM_RMS, cb, il);
+ cb(cur, "attn_post_norm", il);
+
+ if (il == n_layer - 1) {
+ // skip computing output for unused tokens
+ struct ggml_tensor * inp_out_ids = build_inp_out_ids();
+ n_tokens = n_outputs;
+ cur = ggml_get_rows(ctx0, cur, inp_out_ids);
+ inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
+ }
+
+ struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
+ cb(ffn_inp, "ffn_inp", il);
+
+ // feed-forward network
+ cur = llm_build_ffn(ctx0, lctx, ffn_inp,
+ model.layers[il].ffn_up, NULL, NULL,
+ model.layers[il].ffn_gate, NULL, NULL,
+ model.layers[il].ffn_down, NULL, NULL,
+ NULL,
+ LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
+ cb(cur, "ffn_out", il);
+
+ cur = llm_build_norm(ctx0, cur, hparams,
+ model.layers[il].ffn_post_norm, NULL,
+ LLM_NORM_RMS, cb, -1);
+ cb(cur, "ffn_post_norm", -1);
+
+ cur = ggml_add(ctx0, cur, ffn_inp);
+ cb(cur, "ffn_out", il);
+
+ cur = lctx.cvec.apply_to(ctx0, cur, il);
+ cb(cur, "l_out", il);
+
+ // input for next layer
+ inpL = cur;
+ }
+
+ cur = inpL;
+
+ cur = llm_build_norm(ctx0, cur, hparams,
+ model.output_norm, NULL,
+ LLM_NORM_RMS, cb, -1);
+ cb(cur, "result_norm", -1);
+
+ // lm_head
+ cur = llm_build_lora_mm(lctx, ctx0, model.output, cur);
+ cb(cur, "result_output", -1);
+
+ ggml_build_forward_expand(gf, cur);
+
+ return gf;
+ }
+
// based on the build_qwen2moe() function, changes:
// * removed shared experts
// * removed bias
{
result = llm.build_olmo();
} break;
+ case LLM_ARCH_OLMO_1124:
+ {
+ result = llm.build_olmo_1124();
+ } break;
case LLM_ARCH_OLMOE:
{
result = llm.build_olmoe();
// apply K-shift if needed
if (lctx.model.hparams.rope_type != LLAMA_ROPE_TYPE_NONE && lctx.kv_self.has_shift) {
- if (lctx.model.arch == LLM_ARCH_DEEPSEEK2) { // not supported due to MLA
+ if (!llama_kv_cache_can_shift(&lctx)) {
GGML_ABORT("Deepseek2 does not support K-shift");
}
llama_model model;
llm_load_arch(ml, model);
llm_load_hparams(ml, model);
+ llm_load_stats(ml, model);
struct quantize_state_internal qs(model, params);
case LLM_ARCH_QWEN:
case LLM_ARCH_QWEN2:
case LLM_ARCH_QWEN2MOE:
+ case LLM_ARCH_OLMO_1124:
case LLM_ARCH_OLMOE:
case LLM_ARCH_PHI2:
case LLM_ARCH_PHI3:
}
uint64_t llama_model_size(const struct llama_model * model) {
- uint64_t size = 0;
- for (const auto & it : model->tensors_by_name) {
- size += ggml_nbytes(it.second);
- }
- return size;
+ return model->n_bytes;
}
uint64_t llama_model_n_params(const struct llama_model * model) {
- uint64_t nparams = 0;
- for (const auto & it : model->tensors_by_name) {
- nparams += ggml_nelements(it.second);
- }
- return nparams;
+ return model->n_elements;
}
struct ggml_tensor * llama_get_model_tensor(struct llama_model * model, const char * name) {
llama_kv_cache_update_internal(*ctx);
}
+bool llama_kv_cache_can_shift(struct llama_context * ctx) {
+ return ctx->model.arch != LLM_ARCH_DEEPSEEK2; // not supported due to MLA
+}
+
// deprecated
size_t llama_get_state_size(struct llama_context * ctx) {
return llama_state_get_size(ctx);
s += "FP16_VA = " + std::to_string(ggml_cpu_has_fp16_va()) + " | ";
s += "RISCV_VECT = " + std::to_string(ggml_cpu_has_riscv_v()) + " | ";
s += "WASM_SIMD = " + std::to_string(ggml_cpu_has_wasm_simd()) + " | ";
- s += "BLAS = " + std::to_string(ggml_cpu_has_blas()) + " | ";
s += "SSE3 = " + std::to_string(ggml_cpu_has_sse3()) + " | ";
s += "SSSE3 = " + std::to_string(ggml_cpu_has_ssse3()) + " | ";
s += "VSX = " + std::to_string(ggml_cpu_has_vsx()) + " | ";
ctx->t_p_eval_us = ctx->n_p_eval = 0;
}
-void llama_perf_dump_yaml(FILE * stream, const llama_context * ctx) {
- fprintf(stream, "\n");
- fprintf(stream, "###########\n");
- fprintf(stream, "# Timings #\n");
- fprintf(stream, "###########\n");
- fprintf(stream, "\n");
-
- fprintf(stream, "mst_eval: %.2f # ms / token during generation\n",
- 1.0e-3 * ctx->t_eval_us / ctx->n_eval);
- fprintf(stream, "mst_p_eval: %.2f # ms / token during prompt processing\n",
- 1.0e-3 * ctx->t_p_eval_us / ctx->n_p_eval);
- fprintf(stream, "n_eval: %d # number of tokens generated (excluding the first one)\n", ctx->n_eval);
- fprintf(stream, "n_p_eval: %d # number of tokens processed in batches at the beginning\n", ctx->n_p_eval);
- fprintf(stream, "t_eval_us: %" PRId64 " # total microseconds spent generating tokens\n", ctx->t_eval_us);
- fprintf(stream, "t_load_us: %" PRId64 " # total microseconds spent loading the model\n", ctx->t_load_us);
- fprintf(stream, "t_p_eval_us: %" PRId64 " # total microseconds spent prompt processing\n", ctx->t_p_eval_us);
- fprintf(stream, "ts_eval: %.2f # tokens / second during generation\n",
- 1.0e6 * ctx->n_eval / ctx->t_eval_us);
- fprintf(stream, "ts_p_eval: %.2f # tokens / second during prompt processing\n",
- 1.0e6 * ctx->n_p_eval / ctx->t_p_eval_us);
-}
-
// For internal test use
const std::vector<std::pair<std::string, struct ggml_tensor *>> & llama_internal_get_tensor_map(
struct llama_context * ctx