]> git.djapps.eu Git - pkg/ggml/sources/llama.cpp/commitdiff
llama-model : add Glm4Model implementation for GLM-4-0414 (#12867)
authorYuxuan Zhang <redacted>
Fri, 11 Apr 2025 10:10:10 +0000 (18:10 +0800)
committerGitHub <redacted>
Fri, 11 Apr 2025 10:10:10 +0000 (12:10 +0200)
* GLM-4-0414

* use original one

* Using with tensor map

* fix bug

* change order

* change order

* format with flask8

README.md
convert_hf_to_gguf.py
convert_hf_to_gguf_update.py
gguf-py/gguf/constants.py
gguf-py/gguf/tensor_mapping.py
src/llama-arch.cpp
src/llama-arch.h
src/llama-model.cpp
src/llama-vocab.cpp

index e56042f1cb2c9fd9ba737b54c64f5dbeb632a7b7..a129d27d54c919c46291179ecf1c9ab224cfb8b1 100644 (file)
--- a/README.md
+++ b/README.md
@@ -97,6 +97,7 @@ Instructions for adding support for new models: [HOWTO-add-model.md](docs/develo
 - [x] [Flan T5](https://huggingface.co/models?search=flan-t5)
 - [x] [Open Elm models](https://huggingface.co/collections/apple/openelm-instruct-models-6619ad295d7ae9f868b759ca)
 - [x] [ChatGLM3-6b](https://huggingface.co/THUDM/chatglm3-6b) + [ChatGLM4-9b](https://huggingface.co/THUDM/glm-4-9b) + [GLMEdge-1.5b](https://huggingface.co/THUDM/glm-edge-1.5b-chat) + [GLMEdge-4b](https://huggingface.co/THUDM/glm-edge-4b-chat)
+- [x] [GLM-4-0414](https://huggingface.co/collections/THUDM/glm-4-0414-67f3cbcb34dd9d252707cb2e)
 - [x] [SmolLM](https://huggingface.co/collections/HuggingFaceTB/smollm-6695016cad7167254ce15966)
 - [x] [EXAONE-3.0-7.8B-Instruct](https://huggingface.co/LGAI-EXAONE/EXAONE-3.0-7.8B-Instruct)
 - [x] [FalconMamba Models](https://huggingface.co/collections/tiiuae/falconmamba-7b-66b9a580324dd1598b0f6d4a)
index 4aff03a34bb0b15946f84950b9b4c9b4c44af234..2bf97475f78dd1405108ca5ec8aab494c1b4915f 100755 (executable)
@@ -735,6 +735,9 @@ class Model:
         if chkhsh == "d353350c764d8c3b39c763113960e4fb4919bea5fbf208a0e3b22e8469dc7406":
             # ref: https://huggingface.co/meta-llama/Llama-4-Scout-17B-16E-Instruct
             res = "llama4"
+        if chkhsh == "a1336059768a55c99a734006ffb02203cd450fed003e9a71886c88acf24fdbc2":
+            # ref: https://huggingface.co/THUDM/glm-4-9b-hf
+            res = "glm4"
 
         if res is None:
             logger.warning("\n")
@@ -4897,6 +4900,22 @@ class JaisModel(Model):
         self.gguf_writer.add_max_alibi_bias(self.max_alibi_bias)
 
 
+@Model.register("Glm4ForCausalLM")
+class Glm4Model(Model):
+    model_arch = gguf.MODEL_ARCH.GLM4
+
+    def set_vocab(self):
+        self._set_vocab_gpt2()
+
+    def set_gguf_parameters(self):
+        super().set_gguf_parameters()
+        if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
+            if self.hparams["rope_scaling"].get("type") == "yarn":
+                self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
+                self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
+                self.gguf_writer.add_rope_scaling_orig_ctx_len(self.hparams["rope_scaling"]["original_max_position_embeddings"])
+
+
 @Model.register("GlmForCausalLM", "ChatGLMModel", "ChatGLMForConditionalGeneration")
 class ChatGLMModel(Model):
     model_arch = gguf.MODEL_ARCH.CHATGLM
@@ -5588,7 +5607,6 @@ def main() -> None:
     with torch.inference_mode():
         output_type = ftype_map[args.outtype]
         model_architecture = hparams["architectures"][0]
-
         try:
             model_class = Model.from_model_architecture(model_architecture)
         except NotImplementedError:
index ce6104da4a0e9961bc551c01d70b4a5e9e82a386..160c9fe0e616ae1e08b15cbda91ddbda5766709c 100755 (executable)
@@ -114,6 +114,7 @@ models = [
     {"name": "trillion",         "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/trillionlabs/Trillion-7B-preview", },
     {"name": "bailingmoe",       "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/inclusionAI/Ling-lite", },
     {"name": "llama4",           "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/meta-llama/Llama-4-Scout-17B-16E-Instruct", },
+    {"name": "glm4",             "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/THUDM/glm-4-9b-hf", },
 ]
 
 
index 0410654dde2bd78d7eac2afa9f8375a36bdd518b..162070e6e193adc8f7c20d74fe108dca7a723223 100644 (file)
@@ -280,6 +280,7 @@ class MODEL_ARCH(IntEnum):
     DEEPSEEK         = auto()
     DEEPSEEK2        = auto()
     CHATGLM          = auto()
+    GLM4             = auto()
     BITNET           = auto()
     T5               = auto()
     T5ENCODER        = auto()
@@ -487,6 +488,7 @@ MODEL_ARCH_NAMES: dict[MODEL_ARCH, str] = {
     MODEL_ARCH.DEEPSEEK:         "deepseek",
     MODEL_ARCH.DEEPSEEK2:        "deepseek2",
     MODEL_ARCH.CHATGLM:          "chatglm",
+    MODEL_ARCH.GLM4:             "glm4",
     MODEL_ARCH.BITNET:           "bitnet",
     MODEL_ARCH.T5:               "t5",
     MODEL_ARCH.T5ENCODER:        "t5encoder",
@@ -1561,6 +1563,23 @@ MODEL_TENSORS: dict[MODEL_ARCH, list[MODEL_TENSOR]] = {
         MODEL_TENSOR.FFN_DOWN,
         MODEL_TENSOR.FFN_UP,
     ],
+    MODEL_ARCH.GLM4 : [
+        MODEL_TENSOR.TOKEN_EMBD,
+        MODEL_TENSOR.ROPE_FREQS,
+        MODEL_TENSOR.OUTPUT_NORM,
+        MODEL_TENSOR.OUTPUT,
+        MODEL_TENSOR.ATTN_NORM,
+        MODEL_TENSOR.ATTN_QKV,
+        MODEL_TENSOR.ATTN_Q,
+        MODEL_TENSOR.ATTN_K,
+        MODEL_TENSOR.ATTN_V,
+        MODEL_TENSOR.ATTN_OUT,
+        MODEL_TENSOR.FFN_NORM,
+        MODEL_TENSOR.FFN_DOWN,
+        MODEL_TENSOR.FFN_UP,
+        MODEL_TENSOR.ATTN_POST_NORM,
+        MODEL_TENSOR.FFN_POST_NORM,
+    ],
     MODEL_ARCH.BITNET: [
         MODEL_TENSOR.ATTN_Q,
         MODEL_TENSOR.ATTN_K,
index a9e681f8e67655e8deba2db873da41708312f602..35154e9b5da905f8253b7995cc859b1b9508ea5e 100644 (file)
@@ -13,7 +13,7 @@ class TensorNameMap:
             "transformer.wte",                           # gpt2 gpt-j mpt refact qwen dbrx jais exaone
             "transformer.word_embeddings",               # falcon
             "word_embeddings",                           # bloom
-            "model.embed_tokens",                        # llama-hf nemotron olmoe olmo2 rwkv6qwen2
+            "model.embed_tokens",                        # llama-hf nemotron olmoe olmo2 rwkv6qwen2 glm4-0414
             "tok_embeddings",                            # llama-pth
             "embeddings.word_embeddings",                # bert nomic-bert
             "language_model.embedding.word_embeddings",  # persimmon
@@ -241,7 +241,8 @@ class TensorNameMap:
         ),
 
         MODEL_TENSOR.ATTN_POST_NORM: (
-            "model.layers.{bid}.post_attention_layernorm",     # gemma2 olmo2
+            "model.layers.{bid}.post_attention_layernorm",     # gemma2 olmo2    # ge
+            "model.layers.{bid}.post_self_attn_layernorm",     # glm-4-0414
         ),
 
         # Rotary embeddings
@@ -278,6 +279,7 @@ class TensorNameMap:
         # Post feed-forward norm
         MODEL_TENSOR.FFN_POST_NORM: (
             "model.layers.{bid}.post_feedforward_layernorm", # gemma2 olmo2
+            "model.layers.{bid}.post_mlp_layernorm", # glm-4-0414
         ),
 
         MODEL_TENSOR.FFN_GATE_INP: (
@@ -316,7 +318,7 @@ class TensorNameMap:
             "h.{bid}.mlp.c_fc",                                       # gpt2
             "transformer.h.{bid}.mlp.fc1",                            # phi2
             "model.layers.{bid}.mlp.fc1",                             # phi2
-            "model.layers.{bid}.mlp.gate_up_proj",                    # phi3
+            "model.layers.{bid}.mlp.gate_up_proj",                    # phi3 glm-4-0414
             "model.layers.layers.{bid}.mlp.up_proj",                  # plamo
             "model.layers.{bid}.feed_forward.w3",                     # internlm2
             "encoder.layers.{bid}.mlp.fc11",                          # nomic-bert
index 264f8c5b98ffa709f1bea9bb66e4d70046a36857..a6fddc7fd2e543f30412bf6b90d42ae94f156fee 100644 (file)
@@ -54,6 +54,7 @@ static const std::map<llm_arch, const char *> LLM_ARCH_NAMES = {
     { LLM_ARCH_DEEPSEEK,         "deepseek"         },
     { LLM_ARCH_DEEPSEEK2,        "deepseek2"        },
     { LLM_ARCH_CHATGLM,          "chatglm"          },
+    { LLM_ARCH_GLM4,             "glm4"             },
     { LLM_ARCH_BITNET,           "bitnet"           },
     { LLM_ARCH_T5,               "t5"               },
     { LLM_ARCH_T5ENCODER,        "t5encoder"        },
@@ -1152,6 +1153,25 @@ static const std::map<llm_arch, std::map<llm_tensor, const char *>> LLM_TENSOR_N
             { LLM_TENSOR_FFN_DOWN,        "blk.%d.ffn_down" },
         },
     },
+    {
+        LLM_ARCH_GLM4,
+        {
+            { LLM_TENSOR_TOKEN_EMBD,      "token_embd" },
+            { LLM_TENSOR_ROPE_FREQS,      "rope_freqs" },
+            { LLM_TENSOR_OUTPUT_NORM,     "output_norm" },
+            { LLM_TENSOR_OUTPUT,          "output" },
+            { LLM_TENSOR_ATTN_NORM,       "blk.%d.attn_norm" },
+            { LLM_TENSOR_ATTN_Q,          "blk.%d.attn_q" },
+            { LLM_TENSOR_ATTN_K,          "blk.%d.attn_k" },
+            { LLM_TENSOR_ATTN_V,          "blk.%d.attn_v" },
+            { LLM_TENSOR_ATTN_OUT,        "blk.%d.attn_output" },
+            { LLM_TENSOR_FFN_NORM,        "blk.%d.ffn_norm" },
+            { LLM_TENSOR_FFN_UP,          "blk.%d.ffn_up" },
+            { LLM_TENSOR_FFN_DOWN,        "blk.%d.ffn_down" },
+            { LLM_TENSOR_ATTN_POST_NORM,  "blk.%d.post_attention_norm" },
+            { LLM_TENSOR_FFN_POST_NORM,   "blk.%d.post_ffw_norm" },
+        },
+    },
     {
         LLM_ARCH_BITNET,
         {
index 2019352812d5c2064be3f970d2756c5e31768007..2c2099b3c38517381071f824d61f5564a03265b2 100644 (file)
@@ -58,6 +58,7 @@ enum llm_arch {
     LLM_ARCH_DEEPSEEK,
     LLM_ARCH_DEEPSEEK2,
     LLM_ARCH_CHATGLM,
+    LLM_ARCH_GLM4,
     LLM_ARCH_BITNET,
     LLM_ARCH_T5,
     LLM_ARCH_T5ENCODER,
@@ -256,6 +257,8 @@ enum llm_tensor {
     LLM_TENSOR_ATTN_Q_NORM,
     LLM_TENSOR_ATTN_K_NORM,
     LLM_TENSOR_LAYER_OUT_NORM,
+    LLM_TENSOR_POST_ATTN_NORM,
+    LLM_TENSOR_POST_MLP_NORM,
     LLM_TENSOR_SSM_IN,
     LLM_TENSOR_SSM_CONV1D,
     LLM_TENSOR_SSM_X,
index ff847701e99de87c723d56d6d6e21b897c4a89e5..b74dd72cfbf25e823071b10cd52d1e35acfa4480 100644 (file)
@@ -1205,6 +1205,15 @@ void llama_model::load_hparams(llama_model_loader & ml) {
                     default: type = LLM_TYPE_UNKNOWN;
                 }
             } break;
+        case LLM_ARCH_GLM4:
+            {
+                ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
+                switch (hparams.n_layer) {
+                    case 40: type = LLM_TYPE_9B; break;
+                    case 61: type = LLM_TYPE_32B; break;
+                    default: type = LLM_TYPE_UNKNOWN;
+                }
+            } break;
         case LLM_ARCH_BITNET:
             {
                 ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
@@ -3476,6 +3485,45 @@ bool llama_model::load_tensors(llama_model_loader & ml) {
                         layer.ffn_down   = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd}, 0);
                     }
                 } break;
+            case LLM_ARCH_GLM4:
+                {
+                    tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
+
+                    // output
+                    output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
+                    output      = create_tensor(tn(LLM_TENSOR_OUTPUT,      "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
+                    // if output is NULL, init from the input tok embed
+                    if (output == NULL) {
+                        output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
+                    }
+
+                    for (int i = 0; i < n_layer; ++i) {
+                        auto & layer = layers[i];
+
+                        layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
+                        layer.wqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}, TENSOR_NOT_REQUIRED);
+                        layer.bqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "bias", i),   {n_embd + 2*n_embd_gqa}, TENSOR_NOT_REQUIRED);
+
+                        if (layer.wqkv == nullptr) {
+                            layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q,   "weight", i), {n_embd, n_embd_head_k * n_head}, 0);
+                            layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K,   "weight", i), {n_embd, n_embd_k_gqa}, 0);
+                            layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V,   "weight", i), {n_embd, n_embd_v_gqa}, 0);
+                            layer.bq = create_tensor(tn(LLM_TENSOR_ATTN_Q,   "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
+                            layer.bk = create_tensor(tn(LLM_TENSOR_ATTN_K,   "bias", i), {n_embd_gqa}, TENSOR_NOT_REQUIRED);
+                            layer.bv = create_tensor(tn(LLM_TENSOR_ATTN_V,   "bias", i), {n_embd_gqa}, TENSOR_NOT_REQUIRED);
+                        }
+
+                        layer.wo   = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
+
+                        layer.attn_post_norm = create_tensor(tn(LLM_TENSOR_ATTN_POST_NORM, "weight", i), {n_embd}, 0);
+
+                        layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
+                        layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {  n_ff, n_embd}, 0);
+                        layer.ffn_up   = create_tensor(tn(LLM_TENSOR_FFN_UP,   "weight", i), {n_embd, n_ff * 2}, 0);
+
+                        layer.ffn_post_norm  = create_tensor(tn(LLM_TENSOR_FFN_POST_NORM, "weight", i), {n_embd}, 0);
+                    }
+                } break;
             case LLM_ARCH_NEMOTRON:
                 {
                     tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
@@ -10854,6 +10902,157 @@ struct llm_build_chatglm : public llm_graph_context {
     }
 };
 
+struct llm_build_glm4 : public llm_graph_context {
+    llm_build_glm4(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
+        const int64_t n_embd_head = hparams.n_embd_head_v;
+        const int64_t n_embd_gqa  = hparams.n_embd_v_gqa();
+
+        GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
+
+        ggml_tensor * cur;
+        ggml_tensor * inpL;
+
+        inpL = build_inp_embd(model.tok_embd);
+
+        // inp_pos - contains the positions
+        ggml_tensor * inp_pos = build_inp_pos();
+
+        auto * inp_attn = build_attn_inp_kv_unified();
+
+        for (int il = 0; il < n_layer; ++il) {
+            ggml_tensor * inpSA = inpL;
+
+            // Pre-attention norm
+            cur = build_norm(inpL,
+                    model.layers[il].attn_norm,
+                    NULL,
+                    LLM_NORM_RMS, il);
+            cb(cur, "attn_norm", il);
+
+            // self-attention
+            {
+                ggml_tensor * Qcur = nullptr;
+                ggml_tensor * Kcur = nullptr;
+                ggml_tensor * Vcur = nullptr;
+
+                if (model.layers[il].wqkv == nullptr) {
+                    Qcur = build_lora_mm(model.layers[il].wq, cur);
+                    if (model.layers[il].bq) {
+                        Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
+                    }
+                    Kcur = build_lora_mm(model.layers[il].wk, cur);
+                    if (model.layers[il].bk) {
+                        Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
+                    }
+                    Vcur = build_lora_mm(model.layers[il].wv, cur);
+                    if (model.layers[il].bv) {
+                        Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
+                    }
+                } else {
+                    cur = build_lora_mm(model.layers[il].wqkv, cur);
+                    cb(cur, "wqkv", il);
+                    if (model.layers[il].bqkv) {
+                        cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
+                        cb(cur, "bqkv", il);
+                    }
+                    Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd,     n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
+                    Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
+                    Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
+                }
+
+                Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head,    n_tokens);
+                Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
+                Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
+
+                Qcur = ggml_rope_ext(
+                        ctx0, Qcur, inp_pos, nullptr,
+                        n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
+                        ext_factor, attn_factor, beta_fast, beta_slow
+                        );
+
+                Kcur = ggml_rope_ext(
+                        ctx0, Kcur, inp_pos, nullptr,
+                        n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
+                        ext_factor, attn_factor, beta_fast, beta_slow
+                        );
+
+                cb(Qcur, "Qcur", il);
+                cb(Kcur, "Kcur", il);
+                cb(Vcur, "Vcur", il);
+
+                cur = build_attn(inp_attn, gf,
+                        model.layers[il].wo, NULL,
+                        Qcur, Kcur, Vcur, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
+            }
+
+            if (il == n_layer - 1) {
+                // skip computing output for unused tokens
+                ggml_tensor * inp_out_ids = build_inp_out_ids();
+                cur   = ggml_get_rows(ctx0,   cur, inp_out_ids);
+                inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
+            }
+
+            // Post-attention norm (new!)
+            cur = build_norm(cur,
+                    model.layers[il].attn_post_norm,
+                    NULL,
+                    LLM_NORM_RMS, il);
+            cb(cur, "post_attn_norm", il);
+
+            // Add the input (residual connection after post-attention norm)
+            ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
+            cb(ffn_inp, "ffn_inp", il);
+
+            // FF
+            {
+                // Pre-MLP norm
+                cur = build_norm(ffn_inp,
+                        model.layers[il].ffn_norm,
+                        NULL,
+                        LLM_NORM_RMS, il);
+                cb(cur, "ffn_norm", il);
+
+                // MLP
+                cur = build_ffn(cur,
+                        model.layers[il].ffn_up,   NULL, NULL,
+                        NULL,                      NULL, NULL,
+                        model.layers[il].ffn_down, NULL, NULL,
+                        NULL,
+                        LLM_FFN_SWIGLU, LLM_FFN_SEQ, il);
+                cb(cur, "ffn_out", il);
+
+                // Post-MLP norm
+                cur = build_norm(cur,
+                        model.layers[il].ffn_post_norm,
+                        NULL,
+                        LLM_NORM_RMS, il);
+                cb(cur, "post_mlp_norm", il);
+            }
+
+            // Add residual connection after post-MLP norm
+            inpL = ggml_add(ctx0, cur, ffn_inp);
+            cb(inpL, "l_out", il);
+        }
+
+        // Final norm
+        cur = build_norm(inpL,
+                model.output_norm,
+                NULL,
+                LLM_NORM_RMS, -1);
+
+        cb(cur, "result_norm", -1);
+        res->t_embd = cur;
+
+        // Output projection
+        cur = build_lora_mm(model.output, cur);
+
+        cb(cur, "result_output", -1);
+        res->t_logits = cur;
+
+        ggml_build_forward_expand(gf, cur);
+    }
+};
+
 struct llm_build_nemotron : public llm_graph_context {
     llm_build_nemotron(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
         const int64_t n_embd_head = hparams.n_embd_head_v;
@@ -12735,6 +12934,10 @@ llm_graph_result_ptr llama_model::build_graph(
             {
                 llm = std::make_unique<llm_build_chatglm>(*this, params, gf);
             } break;
+        case LLM_ARCH_GLM4:
+            {
+                llm = std::make_unique<llm_build_glm4>(*this, params, gf);
+            } break;
         case LLM_ARCH_BITNET:
             {
                 llm = std::make_unique<llm_build_bitnet>(*this, params, gf);
@@ -12932,6 +13135,7 @@ llama_rope_type llama_model_rope_type(const llama_model * model) {
         case LLM_ARCH_DEEPSEEK2:
         case LLM_ARCH_PLM:
         case LLM_ARCH_CHATGLM:
+        case LLM_ARCH_GLM4:
         case LLM_ARCH_GRANITE:
         case LLM_ARCH_GRANITE_MOE:
         case LLM_ARCH_CHAMELEON:
index 0feabd95aaf2b9731a6f3ab41d3d9e0577de763b..464ff01e06fe181135f31319ac6cda36e676fe49 100644 (file)
@@ -1572,6 +1572,7 @@ void llama_vocab::impl::load(llama_model_loader & ml, const LLM_KV & kv) {
                 pre_type = LLAMA_VOCAB_PRE_TYPE_PORO;
                 clean_spaces = false;
             } else if (
+                tokenizer_pre == "glm4" ||
                 tokenizer_pre == "chatglm-bpe") {
                 pre_type = LLAMA_VOCAB_PRE_TYPE_CHATGLM4;
                 special_bos_id = LLAMA_TOKEN_NULL;