const uint row = gl_WorkGroupID.x + gl_NumWorkGroups.x * gl_WorkGroupID.z;
const uint tid = gl_LocalInvocationID.x;
+ // There are not enough cols to use all threads
+ if (tid >= p.ncols) {
+ return;
+ }
+
+ const uint block_size = min(p.ncols, BLOCK_SIZE);
+
uint a_offset, b_offset, d_offset;
get_offsets(a_offset, b_offset, d_offset);
tmp[tid] = FLOAT_TYPE(0.0f);
- [[unroll]] for (uint i = 0; i < p.ncols/BLOCK_SIZE; i += 2) {
- const uint col = i*BLOCK_SIZE + 2*tid;
+ [[unroll]] for (uint i = 0; i < p.ncols/block_size; i += 2) {
+ const uint col = i*block_size + 2*tid;
const uint ib = (row*p.ncols + col)/QUANT_K; // block index
const uint iqs = (col%QUANT_K)/QUANT_R; // quant index
const uint iybs = col - col%QUANT_K; // y block start index
// sum up partial sums and write back result
barrier();
- [[unroll]] for (uint s = BLOCK_SIZE/2; s > 0; s >>= 1) {
+ [[unroll]] for (uint s = block_size/2; s > 0; s >>= 1) {
if (tid < s) {
tmp[tid] += tmp[tid + s];
}
for (ggml_type type_a : other_types) {
for (ggml_type type_b : {GGML_TYPE_F32}) {
-
- test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, ggml_blck_size(type_a), { 1, 1}, {1, 1}));
- test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, 256, { 1, 1}, {1, 1}));
+ if (ggml_blck_size(type_a) != 256) {
+ test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, ggml_blck_size(type_a), {1, 1}, {1, 1}));
+ }
+ test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, 256, {1, 1}, {1, 1}));
}
}