struct ggml_tensor * wqkv;
// attention bias
+ struct ggml_tensor * bq;
+ struct ggml_tensor * bk;
+ struct ggml_tensor * bv;
struct ggml_tensor * bo;
struct ggml_tensor * bqkv;
layer.wv = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, backend_split);
layer.wo = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, backend_split);
+ try {
+ layer.bq = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd}, backend);
+ } catch (const std::runtime_error& e) {
+ if (std::string(e.what()).find("not found") != std::string::npos) layer.bq = NULL; else throw;
+ }
+
+ try {
+ layer.bk = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa}, backend);
+ } catch (const std::runtime_error& e) {
+ if (std::string(e.what()).find("not found") != std::string::npos) layer.bk = NULL; else throw;
+ }
+
+ try {
+ layer.bv = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa}, backend);
+ } catch (const std::runtime_error& e) {
+ if (std::string(e.what()).find("not found") != std::string::npos) layer.bv = NULL; else throw;
+ }
+
+ try {
+ layer.bo = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, backend);
+ } catch (const std::runtime_error& e) {
+ if (std::string(e.what()).find("not found") != std::string::npos) layer.bo = NULL; else throw;
+ }
+
layer.ffn_norm = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, backend);
layer.ffn_gate = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, backend_split);
if (backend == GGML_BACKEND_GPU) {
vram_weights +=
- ggml_nbytes(layer.attn_norm) + ggml_nbytes(layer.wq) + ggml_nbytes(layer.wk) +
- ggml_nbytes(layer.wv) + ggml_nbytes(layer.wo) + ggml_nbytes(layer.ffn_norm) +
- ggml_nbytes(layer.ffn_gate) + ggml_nbytes(layer.ffn_down) + ggml_nbytes(layer.ffn_up);
+ ggml_nbytes(layer.attn_norm) + ggml_nbytes(layer.wq) + ggml_nbytes(layer.wk) +
+ ggml_nbytes(layer.wv) + ggml_nbytes(layer.wo) +
+ (layer.bq ? ggml_nbytes(layer.bq) : 0) +
+ (layer.bk ? ggml_nbytes(layer.bk) : 0) +
+ (layer.bv ? ggml_nbytes(layer.bv) : 0) +
+ (layer.bo ? ggml_nbytes(layer.bo) : 0) +
+ ggml_nbytes(layer.ffn_norm) + ggml_nbytes(layer.ffn_gate) +
+ ggml_nbytes(layer.ffn_down) + ggml_nbytes(layer.ffn_up);
}
}
} break;
// compute Q and K and RoPE them
struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
cb(Qcur, "Qcur", il);
+ if (model.layers[il].bq) {
+ Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
+ cb(Qcur, "Qcur", il);
+ }
struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
cb(Kcur, "Kcur", il);
+ if (model.layers[il].bk) {
+ Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
+ cb(Kcur, "Kcur", il);
+ }
struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
cb(Vcur, "Vcur", il);
+ if (model.layers[il].bv) {
+ Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
+ cb(Vcur, "Vcur", il);
+ }
Qcur = ggml_rope_custom(
ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos,
llm_build_kv_store(ctx0, hparams, kv_self, gf, Kcur, Vcur, n_ctx, n_tokens, kv_head, cb, il);
cur = llm_build_kqv(ctx0, hparams, kv_self,
- model.layers[il].wo, NULL,
+ model.layers[il].wo, model.layers[il].bo,
Qcur, KQ_scale, KQ_mask, n_ctx, n_tokens, n_kv, -1.0f, cb, il);
cb(cur, "kqv_out", il);
}