CMAKE_EXTRA="-DLLAMA_FATAL_WARNINGS=ON -DLLAMA_CURL=ON"
if [ ! -z ${GG_BUILD_METAL} ]; then
- CMAKE_EXTRA="${CMAKE_EXTRA} -DGGML_METAL=ON -DGGML_METAL_USE_BF16=ON"
+ CMAKE_EXTRA="${CMAKE_EXTRA} -DGGML_METAL=ON"
fi
if [ ! -z ${GG_BUILD_CUDA} ]; then
option(GGML_WEBGPU_DEBUG "ggml: enable WebGPU debug output" OFF)
option(GGML_ZDNN "ggml: use zDNN" OFF)
option(GGML_METAL "ggml: use Metal" ${GGML_METAL_DEFAULT})
-option(GGML_METAL_USE_BF16 "ggml: use bfloat if available" OFF)
option(GGML_METAL_NDEBUG "ggml: disable Metal debugging" OFF)
option(GGML_METAL_SHADER_DEBUG "ggml: compile Metal with -fno-fast-math" OFF)
option(GGML_METAL_EMBED_LIBRARY "ggml: embed Metal library" ${GGML_METAL})
// user-code should use only these functions
//
+// TODO: remove in the future
GGML_BACKEND_API ggml_backend_t ggml_backend_metal_init(void);
GGML_BACKEND_API bool ggml_backend_is_metal(ggml_backend_t backend);
// GGML_TENSOR_LOCALS(size_t, nb1, src1, nb);
//
#define GGML_TENSOR_LOCALS_1(type, prefix, pointer, array) \
- const type prefix##0 = (pointer)->array[0]; \
+ const type prefix##0 = (pointer) ? (pointer)->array[0] : 0; \
GGML_UNUSED(prefix##0);
#define GGML_TENSOR_LOCALS_2(type, prefix, pointer, array) \
GGML_TENSOR_LOCALS_1 (type, prefix, pointer, array) \
- const type prefix##1 = (pointer)->array[1]; \
+ const type prefix##1 = (pointer) ? (pointer)->array[1] : 0; \
GGML_UNUSED(prefix##1);
#define GGML_TENSOR_LOCALS_3(type, prefix, pointer, array) \
GGML_TENSOR_LOCALS_2 (type, prefix, pointer, array) \
- const type prefix##2 = (pointer)->array[2]; \
+ const type prefix##2 = (pointer) ? (pointer)->array[2] : 0; \
GGML_UNUSED(prefix##2);
#define GGML_TENSOR_LOCALS(type, prefix, pointer, array) \
GGML_TENSOR_LOCALS_3 (type, prefix, pointer, array) \
- const type prefix##3 = (pointer)->array[3]; \
+ const type prefix##3 = (pointer) ? (pointer)->array[3] : 0; \
GGML_UNUSED(prefix##3);
#define GGML_TENSOR_UNARY_OP_LOCALS \
message(STATUS "Metal framework found")
ggml_add_backend_library(ggml-metal
- ggml-metal.m
+ ggml-metal.cpp
+ ggml-metal-device.m
+ ggml-metal-device.cpp
ggml-metal-common.cpp
+ ggml-metal-context.m
+ ggml-metal-ops.cpp
)
target_link_libraries(ggml-metal PRIVATE
add_compile_definitions(GGML_METAL_NDEBUG)
endif()
-if (GGML_METAL_USE_BF16)
- add_compile_definitions(GGML_METAL_USE_BF16)
-endif()
-
# copy metal files to bin directory
configure_file(../ggml-common.h ${CMAKE_RUNTIME_OUTPUT_DIRECTORY}/ggml-common.h COPYONLY)
configure_file(ggml-metal.metal ${CMAKE_RUNTIME_OUTPUT_DIRECTORY}/ggml-metal.metal COPYONLY)
int debug = 0;
};
-struct ggml_mem_ranges * ggml_mem_ranges_init(int debug) {
+ggml_mem_ranges_t ggml_mem_ranges_init(int debug) {
auto * res = new ggml_mem_ranges;
res->ranges.reserve(256);
return res;
}
-void ggml_mem_ranges_free(ggml_mem_ranges * mrs) {
+void ggml_mem_ranges_free(ggml_mem_ranges_t mrs) {
delete mrs;
}
-void ggml_mem_ranges_reset(ggml_mem_ranges * mrs) {
+void ggml_mem_ranges_reset(ggml_mem_ranges_t mrs) {
mrs->ranges.clear();
}
-static bool ggml_mem_ranges_add(ggml_mem_ranges * mrs, ggml_mem_range mr) {
+static bool ggml_mem_ranges_add(ggml_mem_ranges_t mrs, ggml_mem_range mr) {
mrs->ranges.push_back(mr);
return true;
return ggml_mem_range_from_tensor(tensor, MEM_RANGE_TYPE_DST);
}
-static bool ggml_mem_ranges_add_src(ggml_mem_ranges * mrs, const ggml_tensor * tensor) {
+static bool ggml_mem_ranges_add_src(ggml_mem_ranges_t mrs, const ggml_tensor * tensor) {
GGML_ASSERT(tensor);
ggml_mem_range mr = ggml_mem_range_from_tensor_src(tensor);
return ggml_mem_ranges_add(mrs, mr);
}
-static bool ggml_mem_ranges_add_dst(ggml_mem_ranges * mrs, const ggml_tensor * tensor) {
+static bool ggml_mem_ranges_add_dst(ggml_mem_ranges_t mrs, const ggml_tensor * tensor) {
GGML_ASSERT(tensor);
ggml_mem_range mr = ggml_mem_range_from_tensor_dst(tensor);
return ggml_mem_ranges_add(mrs, mr);
}
-bool ggml_mem_ranges_add(ggml_mem_ranges * mrs, const ggml_tensor * tensor) {
+bool ggml_mem_ranges_add(ggml_mem_ranges_t mrs, const ggml_tensor * tensor) {
for (int i = 0; i < GGML_MAX_DIMS; i++) {
if (tensor->src[i]) {
ggml_mem_ranges_add_src(mrs, tensor->src[i]);
return ggml_mem_ranges_add_dst(mrs, tensor);
}
-static bool ggml_mem_ranges_check(const ggml_mem_ranges * mrs, ggml_mem_range mr) {
+static bool ggml_mem_ranges_check(ggml_mem_ranges_t mrs, ggml_mem_range mr) {
for (size_t i = 0; i < mrs->ranges.size(); i++) {
const auto & cmp = mrs->ranges[i];
return true;
}
-static bool ggml_mem_ranges_check_src(const ggml_mem_ranges * mrs, const ggml_tensor * tensor) {
+static bool ggml_mem_ranges_check_src(ggml_mem_ranges_t mrs, const ggml_tensor * tensor) {
GGML_ASSERT(tensor);
ggml_mem_range mr = ggml_mem_range_from_tensor_src(tensor);
return res;
}
-static bool ggml_mem_ranges_check_dst(const ggml_mem_ranges * mrs, const ggml_tensor * tensor) {
+static bool ggml_mem_ranges_check_dst(ggml_mem_ranges_t mrs, const ggml_tensor * tensor) {
GGML_ASSERT(tensor);
ggml_mem_range mr = ggml_mem_range_from_tensor_dst(tensor);
return res;
}
-bool ggml_mem_ranges_check(const ggml_mem_ranges * mrs, const ggml_tensor * tensor) {
+bool ggml_mem_ranges_check(ggml_mem_ranges_t mrs, const ggml_tensor * tensor) {
for (int i = 0; i < GGML_MAX_DIMS; i++) {
if (tensor->src[i]) {
if (!ggml_mem_ranges_check_src(mrs, tensor->src[i])) {
static std::vector<int> ggml_metal_graph_optimize_reorder(const std::vector<node_info> & nodes) {
// helper to add node src and dst ranges
- const auto & h_add = [](ggml_mem_ranges * mrs, const node_info & node) {
+ const auto & h_add = [](ggml_mem_ranges_t mrs, const node_info & node) {
for (int i = 0; i < GGML_MAX_SRC; i++) {
if (node.node->src[i]) {
if (!ggml_mem_ranges_add_src(mrs, node.node->src[i])) {
};
// helper to check if a node can run concurrently with the existing set of nodes
- const auto & h_check = [](const ggml_mem_ranges * mrs, const node_info & node) {
+ const auto & h_check = [](ggml_mem_ranges_t mrs, const node_info & node) {
for (int i = 0; i < GGML_MAX_SRC; i++) {
if (node.node->src[i]) {
if (!ggml_mem_ranges_check_src(mrs, node.node->src[i])) {
std::vector<bool> used(n, false);
// the memory ranges for the set of currently concurrent nodes
- ggml_mem_ranges * mrs0 = ggml_mem_ranges_init(0);
+ ggml_mem_ranges_t mrs0 = ggml_mem_ranges_init(0);
// the memory ranges for the set of nodes that haven't been processed yet, when looking forward for a node to reorder
- ggml_mem_ranges * mrs1 = ggml_mem_ranges_init(0);
+ ggml_mem_ranges_t mrs1 = ggml_mem_ranges_init(0);
for (int i0 = 0; i0 < n; i0++) {
if (used[i0]) {
return res;
}
-void ggml_metal_graph_optimize(ggml_cgraph * gf) {
+void ggml_graph_optimize(ggml_cgraph * gf) {
constexpr int MAX_FUSE = 16;
const int n = gf->n_nodes;
// can be added to the set without violating the constraints (i.e. if it can be executed concurrently with the
// tasks already in the set)
//
-struct ggml_mem_ranges;
+typedef struct ggml_mem_ranges * ggml_mem_ranges_t;
-struct ggml_mem_ranges * ggml_mem_ranges_init(int debug);
-void ggml_mem_ranges_free(struct ggml_mem_ranges * mrs);
+ggml_mem_ranges_t ggml_mem_ranges_init(int debug);
+void ggml_mem_ranges_free(ggml_mem_ranges_t mrs);
// remove all ranges from the set
-void ggml_mem_ranges_reset(struct ggml_mem_ranges * mrs);
+void ggml_mem_ranges_reset(ggml_mem_ranges_t mrs);
// add src or dst ranges to track
-bool ggml_mem_ranges_add(struct ggml_mem_ranges * mrs, const struct ggml_tensor * tensor);
+bool ggml_mem_ranges_add(ggml_mem_ranges_t mrs, const struct ggml_tensor * tensor);
// return false if:
// - new src range overlaps with any existing dst range
// - new dst range overlaps with any existing range (src or dst)
-bool ggml_mem_ranges_check(const struct ggml_mem_ranges * mrs, const struct ggml_tensor * tensor);
+bool ggml_mem_ranges_check(ggml_mem_ranges_t mrs, const struct ggml_tensor * tensor);
// reorder the nodes in the graph to improve concurrency, while respecting fusion
//
// note: this implementation is generic and not specific to metal
// if it proves to work well, we can start using it for other backends in the future
-void ggml_metal_graph_optimize(struct ggml_cgraph * gf);
+void ggml_graph_optimize(struct ggml_cgraph * gf);
#ifdef __cplusplus
}
--- /dev/null
+#pragma once
+
+#include "ggml-metal-device.h"
+
+#ifdef __cplusplus
+extern "C" {
+#endif
+
+//
+// backend context
+//
+
+typedef struct ggml_metal * ggml_metal_t;
+
+ggml_metal_t ggml_metal_init(ggml_metal_device_t dev);
+void ggml_metal_free(ggml_metal_t ctx);
+
+void ggml_metal_synchronize(ggml_metal_t ctx);
+
+void ggml_metal_set_tensor_async(ggml_metal_t ctx, struct ggml_tensor * tensor, const void * data, size_t offset, size_t size);
+void ggml_metal_get_tensor_async(ggml_metal_t ctx, const struct ggml_tensor * tensor, void * data, size_t offset, size_t size);
+
+enum ggml_status ggml_metal_graph_compute (ggml_metal_t ctx, struct ggml_cgraph * gf);
+void ggml_metal_graph_optimize(ggml_metal_t ctx, struct ggml_cgraph * gf);
+
+void ggml_metal_set_n_cb (ggml_metal_t ctx, int n_cb);
+void ggml_metal_set_abort_callback (ggml_metal_t ctx, ggml_abort_callback abort_callback, void * user_data);
+bool ggml_metal_supports_family (ggml_metal_t ctx, int family);
+void ggml_metal_capture_next_compute(ggml_metal_t ctx);
+
+#ifdef __cplusplus
+}
+#endif
--- /dev/null
+#import "ggml-metal-context.h"
+
+#import "ggml-impl.h"
+#import "ggml-backend-impl.h"
+
+#import "ggml-metal-impl.h"
+#import "ggml-metal-common.h"
+#import "ggml-metal-ops.h"
+
+#import <Foundation/Foundation.h>
+
+#import <Metal/Metal.h>
+
+#undef MIN
+#undef MAX
+#define MIN(a, b) ((a) < (b) ? (a) : (b))
+#define MAX(a, b) ((a) > (b) ? (a) : (b))
+
+// max number of MTLCommandBuffer used to submit a graph for processing
+#define GGML_METAL_MAX_COMMAND_BUFFERS 8
+
+struct ggml_metal_command_buffer {
+ id<MTLCommandBuffer> obj;
+};
+
+struct ggml_metal {
+ id<MTLDevice> device;
+ id<MTLCommandQueue> queue; // currently a pointer to the device queue, but might become separate queue [TAG_QUEUE_PER_BACKEND]
+
+ ggml_metal_device_t dev;
+ ggml_metal_library_t lib;
+
+ dispatch_queue_t d_queue;
+
+ // additional, inference-time compiled pipelines
+ ggml_metal_pipelines_t pipelines_ext;
+
+ bool use_bfloat;
+ bool use_fusion;
+ bool use_concurrency;
+ bool use_graph_optimize;
+
+ int debug_graph;
+ int debug_fusion;
+
+ // how many times a given op was fused
+ uint64_t fuse_cnt[GGML_OP_COUNT];
+
+ // capture state
+ bool capture_next_compute;
+ bool capture_started;
+
+ id<MTLCaptureScope> capture_scope;
+
+ // command buffer state
+ int n_cb; // number of extra threads used to submit the command buffers
+ int n_nodes_0; // number of nodes submitted by the main thread
+ int n_nodes_1; // remaining number of nodes submitted by the n_cb threads
+ int n_nodes_per_cb;
+
+ struct ggml_cgraph * gf;
+
+ // the callback given to the thread pool
+ void (^encode_async)(size_t ith);
+
+ // n_cb command buffers + 1 used by the main thread
+ struct ggml_metal_command_buffer cmd_bufs[GGML_METAL_MAX_COMMAND_BUFFERS + 1];
+
+ // extra command buffers for things like getting, setting and copying tensors
+ NSMutableArray * cmd_bufs_ext;
+
+ // the last command buffer queued into the Metal queue with operations relevant to the current Metal backend
+ id<MTLCommandBuffer> cmd_buf_last;
+
+ // abort ggml_metal_graph_compute if callback returns true
+ ggml_abort_callback abort_callback;
+ void * abort_callback_data;
+};
+
+ggml_metal_t ggml_metal_init(ggml_metal_device_t dev) {
+ GGML_LOG_INFO("%s: allocating\n", __func__);
+
+#if TARGET_OS_OSX && !GGML_METAL_NDEBUG
+ // Show all the Metal device instances in the system
+ NSArray * devices = MTLCopyAllDevices();
+ for (id<MTLDevice> device in devices) {
+ GGML_LOG_INFO("%s: found device: %s\n", __func__, [[device name] UTF8String]);
+ }
+ [devices release]; // since it was created by a *Copy* C method
+#endif
+
+ // init context
+ ggml_metal_t res = calloc(1, sizeof(struct ggml_metal));
+
+ res->device = ggml_metal_device_get_obj(dev);
+
+ GGML_LOG_INFO("%s: picking default device: %s\n", __func__, [[res->device name] UTF8String]);
+
+ // TODO: would it be better to have one queue for the backend and one queue for the device?
+ // the graph encoders and async ops would use the backend queue while the sync ops would use the device queue?
+ //res->queue = [device newCommandQueue]; [TAG_QUEUE_PER_BACKEND]
+ res->queue = ggml_metal_device_get_queue(dev);
+ if (res->queue == nil) {
+ GGML_LOG_ERROR("%s: error: failed to create command queue\n", __func__);
+ return NULL;
+ }
+
+ res->dev = dev;
+ res->lib = ggml_metal_device_get_library(dev);
+ if (res->lib == NULL) {
+ GGML_LOG_WARN("%s: the device does not have a precompiled Metal library - this is unexpected\n", __func__);
+ GGML_LOG_WARN("%s: will try to compile it on the fly\n", __func__);
+
+ res->lib = ggml_metal_library_init(dev);
+ if (res->lib == NULL) {
+ GGML_LOG_ERROR("%s: error: failed to initialize the Metal library\n", __func__);
+
+ free(res);
+
+ return NULL;
+ }
+ }
+
+ const struct ggml_metal_device_props * props_dev = ggml_metal_device_get_props(dev);
+
+ res->d_queue = dispatch_queue_create("ggml-metal", DISPATCH_QUEUE_CONCURRENT);
+
+ res->use_bfloat = props_dev->has_bfloat;
+ res->use_fusion = getenv("GGML_METAL_FUSION_DISABLE") == nil;
+ res->use_concurrency = getenv("GGML_METAL_CONCURRENCY_DISABLE") == nil;
+
+ {
+ const char * val = getenv("GGML_METAL_GRAPH_DEBUG");
+ res->debug_graph = val ? atoi(val) : 0;
+ }
+
+ {
+ const char * val = getenv("GGML_METAL_FUSION_DEBUG");
+ res->debug_fusion = val ? atoi(val) : 0;
+ }
+
+ res->use_graph_optimize = true;
+
+ if (getenv("GGML_METAL_GRAPH_OPTIMIZE_DISABLE") != NULL) {
+ res->use_graph_optimize = false;
+ }
+
+ memset(res->fuse_cnt, 0, sizeof(res->fuse_cnt));
+
+ GGML_LOG_INFO("%s: use bfloat = %s\n", __func__, res->use_bfloat ? "true" : "false");
+ GGML_LOG_INFO("%s: use fusion = %s\n", __func__, res->use_fusion ? "true" : "false");
+ GGML_LOG_INFO("%s: use concurrency = %s\n", __func__, res->use_concurrency ? "true" : "false");
+ GGML_LOG_INFO("%s: use graph optimize = %s\n", __func__, res->use_graph_optimize ? "true" : "false");
+
+ res->capture_next_compute = false;
+ res->capture_started = false;
+ res->capture_scope = nil;
+
+ res->gf = nil;
+ res->encode_async = nil;
+ for (int i = 0; i < GGML_METAL_MAX_COMMAND_BUFFERS; ++i) {
+ res->cmd_bufs[i].obj = nil;
+ }
+
+ res->cmd_bufs_ext = [[NSMutableArray alloc] init];
+
+ res->cmd_buf_last = nil;
+
+ res->pipelines_ext = ggml_metal_pipelines_init();
+
+ return res;
+}
+
+void ggml_metal_free(ggml_metal_t ctx) {
+ GGML_LOG_INFO("%s: deallocating\n", __func__);
+
+ for (int i = 0; i < GGML_METAL_MAX_COMMAND_BUFFERS; ++i) {
+ if (ctx->cmd_bufs[i].obj) {
+ [ctx->cmd_bufs[i].obj release];
+ }
+ }
+
+ for (int i = 0; i < (int) ctx->cmd_bufs_ext.count; ++i) {
+ if (ctx->cmd_bufs_ext[i]) {
+ [ctx->cmd_bufs_ext[i] release];
+ }
+ }
+
+ [ctx->cmd_bufs_ext removeAllObjects];
+ [ctx->cmd_bufs_ext release];
+
+ if (ctx->pipelines_ext) {
+ ggml_metal_pipelines_free(ctx->pipelines_ext);
+ ctx->pipelines_ext = nil;
+ }
+
+ if (ctx->debug_fusion > 0) {
+ GGML_LOG_DEBUG("%s: fusion stats:\n", __func__);
+ for (int i = 0; i < GGML_OP_COUNT; i++) {
+ if (ctx->fuse_cnt[i] == 0) {
+ continue;
+ }
+
+ // note: cannot use ggml_log here
+ GGML_LOG_DEBUG("%s: - %s: %" PRIu64 "\n", __func__, ggml_op_name((enum ggml_op) i), ctx->fuse_cnt[i]);
+ }
+ }
+
+ Block_release(ctx->encode_async);
+
+ //[ctx->queue release]; // [TAG_QUEUE_PER_BACKEND]
+
+ dispatch_release(ctx->d_queue);
+
+ free(ctx);
+}
+
+void ggml_metal_synchronize(ggml_metal_t ctx) {
+ // wait for any backend operations to finish
+ if (ctx->cmd_buf_last) {
+ [ctx->cmd_buf_last waitUntilCompleted];
+ ctx->cmd_buf_last = nil;
+ }
+
+ // release any completed command buffers
+ if (ctx->cmd_bufs_ext.count > 0) {
+ for (size_t i = 0; i < ctx->cmd_bufs_ext.count; ++i) {
+ id<MTLCommandBuffer> cmd_buf = ctx->cmd_bufs_ext[i];
+
+ MTLCommandBufferStatus status = [cmd_buf status];
+ if (status != MTLCommandBufferStatusCompleted) {
+ GGML_LOG_ERROR("%s: error: command buffer %d failed with status %d\n", __func__, (int) i, (int) status);
+ if (status == MTLCommandBufferStatusError) {
+ GGML_LOG_ERROR("error: %s\n", [[cmd_buf error].localizedDescription UTF8String]);
+ }
+ GGML_ABORT("fatal error");
+ }
+
+ [cmd_buf release];
+ }
+
+ [ctx->cmd_bufs_ext removeAllObjects];
+ }
+}
+
+static struct ggml_metal_buffer_id ggml_metal_get_buffer_id(const struct ggml_tensor * t) {
+ if (!t) {
+ return (struct ggml_metal_buffer_id) { nil, 0 };
+ }
+
+ ggml_backend_buffer_t buffer = t->view_src ? t->view_src->buffer : t->buffer;
+
+ return ggml_metal_buffer_get_id(buffer->context, t);
+}
+
+void ggml_metal_set_tensor_async(ggml_metal_t ctx, struct ggml_tensor * tensor, const void * data, size_t offset, size_t size) {
+ @autoreleasepool {
+ // wrap the source data into a Metal buffer
+ id<MTLBuffer> buf_src = [ctx->device newBufferWithBytes:data
+ length:size
+ options:MTLResourceStorageModeShared];
+
+ struct ggml_metal_buffer_id bid_dst = ggml_metal_get_buffer_id(tensor);
+ if (bid_dst.metal == nil) {
+ GGML_ABORT("%s: failed to find buffer for tensor '%s'\n", __func__, tensor->name);
+ }
+
+ bid_dst.offs += offset;
+
+ // queue the copy operation into the queue of the Metal context
+ // this will be queued at the end, after any currently ongoing GPU operations
+ id<MTLCommandBuffer> cmd_buf = [ctx->queue commandBufferWithUnretainedReferences];
+ id<MTLBlitCommandEncoder> encoder = [cmd_buf blitCommandEncoder];
+
+ [encoder copyFromBuffer:buf_src
+ sourceOffset:0
+ toBuffer:bid_dst.metal
+ destinationOffset:bid_dst.offs
+ size:size];
+
+ [encoder endEncoding];
+ [cmd_buf commit];
+
+ // do not wait here for completion
+ //[cmd_buf waitUntilCompleted];
+
+ // instead, remember a reference to the command buffer and wait for it later if needed
+ [ctx->cmd_bufs_ext addObject:cmd_buf];
+ ctx->cmd_buf_last = cmd_buf;
+
+ [cmd_buf retain];
+ }
+}
+
+void ggml_metal_get_tensor_async(ggml_metal_t ctx, const struct ggml_tensor * tensor, void * data, size_t offset, size_t size) {
+ @autoreleasepool {
+ id<MTLBuffer> buf_dst = [ctx->device newBufferWithBytesNoCopy:data
+ length:size
+ options:MTLResourceStorageModeShared
+ deallocator:nil];
+
+ struct ggml_metal_buffer_id bid_src = ggml_metal_get_buffer_id(tensor);
+ if (bid_src.metal == nil) {
+ GGML_ABORT("%s: failed to find buffer for tensor '%s'\n", __func__, tensor->name);
+ }
+
+ bid_src.offs += offset;
+
+ // queue the copy operation into the queue of the Metal context
+ // this will be queued at the end, after any currently ongoing GPU operations
+ id<MTLCommandBuffer> cmd_buf = [ctx->queue commandBufferWithUnretainedReferences];
+ id<MTLBlitCommandEncoder> encoder = [cmd_buf blitCommandEncoder];
+
+ [encoder copyFromBuffer:bid_src.metal
+ sourceOffset:bid_src.offs
+ toBuffer:buf_dst
+ destinationOffset:0
+ size:size];
+
+ [encoder endEncoding];
+ [cmd_buf commit];
+
+ // do not wait here for completion
+ //[cmd_buf waitUntilCompleted];
+
+ // instead, remember a reference to the command buffer and wait for it later if needed
+ [ctx->cmd_bufs_ext addObject:cmd_buf];
+ ctx->cmd_buf_last = cmd_buf;
+
+ [cmd_buf retain];
+ }
+}
+
+enum ggml_status ggml_metal_graph_compute(ggml_metal_t ctx, struct ggml_cgraph * gf) {
+ // number of nodes encoded by the main thread (empirically determined)
+ const int n_main = 64;
+
+ // number of threads in addition to the main thread
+ const int n_cb = ctx->n_cb;
+
+ // submit the ggml compute graph to the GPU by creating command buffers and encoding the ops in them
+ // the first n_nodes_0 are encoded and submitted for processing directly by the calling thread
+ // while these nodes are processing, we start n_cb threads to enqueue the rest of the nodes
+ // each thread creates it's own command buffer and enqueues the ops in parallel
+ //
+ // tests on M1 Pro and M2 Ultra using LLaMA models, show that optimal values for n_cb are 1 or 2
+
+ @autoreleasepool {
+ ctx->gf = gf;
+
+ ctx->n_nodes_0 = MIN(n_main, gf->n_nodes);
+ ctx->n_nodes_1 = gf->n_nodes - ctx->n_nodes_0;
+
+ ctx->n_nodes_per_cb = (ctx->n_nodes_1 + ctx->n_cb - 1) / ctx->n_cb;
+
+ const bool use_capture = ctx->capture_next_compute;
+ if (use_capture) {
+ ctx->capture_next_compute = false;
+
+ // make sure all previous computations have finished before starting the capture
+ if (ctx->cmd_buf_last) {
+ [ctx->cmd_buf_last waitUntilCompleted];
+ ctx->cmd_buf_last = nil;
+ }
+
+ if (!ctx->capture_started) {
+ // create capture scope
+ ctx->capture_scope = [[MTLCaptureManager sharedCaptureManager] newCaptureScopeWithDevice:ctx->device];
+
+ MTLCaptureDescriptor * descriptor = [MTLCaptureDescriptor new];
+ descriptor.captureObject = ctx->capture_scope;
+ descriptor.destination = MTLCaptureDestinationGPUTraceDocument;
+ descriptor.outputURL = [NSURL fileURLWithPath:[NSString stringWithFormat:@"/tmp/perf-metal.gputrace"]];
+
+ NSError * error = nil;
+ if (![[MTLCaptureManager sharedCaptureManager] startCaptureWithDescriptor:descriptor error:&error]) {
+ GGML_LOG_ERROR("%s: error: unable to start capture '%s'\n", __func__, [[error localizedDescription] UTF8String]);
+ } else {
+ [ctx->capture_scope beginScope];
+ ctx->capture_started = true;
+ }
+ }
+ }
+
+ // the main thread commits the first few commands immediately
+ // cmd_buf[n_cb]
+ {
+ id<MTLCommandBuffer> cmd_buf = [ctx->queue commandBufferWithUnretainedReferences];
+ [cmd_buf retain];
+
+ if (ctx->cmd_bufs[n_cb].obj) {
+ [ctx->cmd_bufs[n_cb].obj release];
+ }
+ ctx->cmd_bufs[n_cb].obj = cmd_buf;
+
+ [cmd_buf enqueue];
+
+ ctx->encode_async(n_cb);
+ }
+
+ // remember the command buffer for the next iteration
+ ctx->cmd_buf_last = ctx->cmd_bufs[n_cb].obj;
+
+ // prepare the rest of the command buffers asynchronously (optional)
+ // cmd_buf[0.. n_cb)
+ for (int cb_idx = 0; cb_idx < n_cb; ++cb_idx) {
+ id<MTLCommandBuffer> cmd_buf = [ctx->queue commandBufferWithUnretainedReferences];
+ [cmd_buf retain];
+
+ if (ctx->cmd_bufs[cb_idx].obj) {
+ [ctx->cmd_bufs[cb_idx].obj release];
+ }
+ ctx->cmd_bufs[cb_idx].obj = cmd_buf;
+
+ // always enqueue the first two command buffers
+ // enqueue all of the command buffers if we don't need to abort
+ if (cb_idx < 2 || ctx->abort_callback == NULL) {
+ [cmd_buf enqueue];
+
+ // update the pointer to the last queued command buffer
+ // this is needed to implement synchronize()
+ ctx->cmd_buf_last = cmd_buf;
+ }
+ }
+
+ dispatch_apply(n_cb, ctx->d_queue, ctx->encode_async);
+
+ // for debugging: block until graph is computed
+ //[ctx->cmd_buf_last waitUntilCompleted];
+
+ // enter here only when capturing in order to wait for all computation to finish
+ // otherwise, we leave the graph to compute asynchronously
+ if (!use_capture && ctx->capture_started) {
+ // wait for completion and check status of each command buffer
+ // needed to detect if the device ran out-of-memory for example (#1881)
+ {
+ id<MTLCommandBuffer> cmd_buf = ctx->cmd_bufs[n_cb].obj;
+ [cmd_buf waitUntilCompleted];
+
+ MTLCommandBufferStatus status = [cmd_buf status];
+ if (status != MTLCommandBufferStatusCompleted) {
+ GGML_LOG_INFO("%s: command buffer %d failed with status %lu\n", __func__, n_cb, status);
+ if (status == MTLCommandBufferStatusError) {
+ GGML_LOG_INFO("error: %s\n", [[cmd_buf error].localizedDescription UTF8String]);
+ }
+
+ return GGML_STATUS_FAILED;
+ }
+ }
+
+ for (int i = 0; i < n_cb; ++i) {
+ id<MTLCommandBuffer> cmd_buf = ctx->cmd_bufs[i].obj;
+ [cmd_buf waitUntilCompleted];
+
+ MTLCommandBufferStatus status = [cmd_buf status];
+ if (status != MTLCommandBufferStatusCompleted) {
+ GGML_LOG_INFO("%s: command buffer %d failed with status %lu\n", __func__, i, status);
+ if (status == MTLCommandBufferStatusError) {
+ GGML_LOG_INFO("error: %s\n", [[cmd_buf error].localizedDescription UTF8String]);
+ }
+
+ return GGML_STATUS_FAILED;
+ }
+
+ id<MTLCommandBuffer> next_buffer = (i + 1 < n_cb ? ctx->cmd_bufs[i + 1].obj : nil);
+ if (!next_buffer) {
+ continue;
+ }
+
+ const bool next_queued = ([next_buffer status] != MTLCommandBufferStatusNotEnqueued);
+ if (next_queued) {
+ continue;
+ }
+
+ if (ctx->abort_callback && ctx->abort_callback(ctx->abort_callback_data)) {
+ GGML_LOG_INFO("%s: command buffer %d aborted", __func__, i);
+ return GGML_STATUS_ABORTED;
+ }
+
+ [next_buffer commit];
+ }
+
+ [ctx->capture_scope endScope];
+ [[MTLCaptureManager sharedCaptureManager] stopCapture];
+ }
+ }
+
+ return GGML_STATUS_SUCCESS;
+}
+
+void ggml_metal_graph_optimize(ggml_metal_t ctx, struct ggml_cgraph * gf) {
+ //const int64_t t_start = ggml_time_us();
+
+ if (ctx->use_graph_optimize) {
+ ggml_graph_optimize(gf);
+ }
+
+ //printf("%s: graph optimize took %.3f ms\n", __func__, (ggml_time_us() - t_start) / 1000.0);
+}
+
+void ggml_metal_set_n_cb(ggml_metal_t ctx, int n_cb) {
+ if (ctx->n_cb != n_cb) {
+ ctx->n_cb = MIN(n_cb, GGML_METAL_MAX_COMMAND_BUFFERS);
+
+ if (ctx->n_cb > 2) {
+ GGML_LOG_WARN("%s: n_cb = %d, using n_cb > 2 is not recommended and can degrade the performance in some cases\n", __func__, n_cb);
+ }
+ }
+
+ if (ctx->encode_async) {
+ Block_release(ctx->encode_async);
+ }
+
+ ctx->encode_async = Block_copy(^(size_t iter) {
+ const int cb_idx = iter;
+ const int n_cb_l = ctx->n_cb;
+
+ const int n_nodes_0 = ctx->n_nodes_0;
+ const int n_nodes_1 = ctx->n_nodes_1;
+
+ const int n_nodes_per_cb = ctx->n_nodes_per_cb;
+
+ int idx_start = 0;
+ int idx_end = n_nodes_0;
+
+ if (cb_idx < n_cb_l) {
+ idx_start = n_nodes_0 + ( (cb_idx + 0) * n_nodes_per_cb);
+ idx_end = n_nodes_0 + (MIN((cb_idx == n_cb_l - 1) ? n_nodes_1 : (cb_idx + 1) * n_nodes_per_cb, n_nodes_1));
+ }
+
+ id<MTLCommandBuffer> cmd_buf = ctx->cmd_bufs[cb_idx].obj;
+
+ ggml_metal_op_t ctx_op = ggml_metal_op_init(
+ ctx->dev,
+ cmd_buf,
+ ctx->gf,
+ idx_start,
+ idx_end,
+ ctx->use_fusion,
+ ctx->use_concurrency,
+ ctx->capture_next_compute,
+ ctx->debug_graph,
+ ctx->debug_fusion);
+
+ for (int idx = idx_start; idx < idx_end;) {
+ const int res = ggml_metal_op_encode(ctx_op, idx);
+ if (res == 0) {
+ break;
+ }
+
+ idx += res;
+ }
+
+ ggml_metal_op_free(ctx_op);
+
+ if (cb_idx < 2 || ctx->abort_callback == NULL) {
+ [cmd_buf commit];
+ }
+ });
+}
+
+void ggml_metal_set_abort_callback(ggml_metal_t ctx, ggml_abort_callback abort_callback, void * user_data) {
+ ctx->abort_callback = abort_callback;
+ ctx->abort_callback_data = user_data;
+}
+
+bool ggml_metal_supports_family(ggml_metal_t ctx, int family) {
+ GGML_ASSERT(ctx->device != nil);
+
+ return [ctx->device supportsFamily:(MTLGPUFamilyApple1 + family - 1)];
+}
+
+void ggml_metal_capture_next_compute(ggml_metal_t ctx) {
+ ctx->capture_next_compute = true;
+}
--- /dev/null
+#include "ggml-metal-device.h"
+
+#include "ggml-metal-impl.h"
+
+#include "ggml-impl.h"
+
+#include <cassert>
+#include <memory>
+#include <string>
+#include <unordered_map>
+
+struct ggml_metal_device_deleter {
+ void operator()(ggml_metal_device_t ctx) {
+ ggml_metal_device_free(ctx);
+ }
+};
+
+typedef std::unique_ptr<ggml_metal_device, ggml_metal_device_deleter> ggml_metal_device_ptr;
+
+ggml_metal_device_t ggml_metal_device_get(void) {
+ static ggml_metal_device_ptr ctx { ggml_metal_device_init() };
+
+ return ctx.get();
+}
+
+struct ggml_metal_pipelines {
+ std::unordered_map<std::string, ggml_metal_pipeline_t> data;
+};
+
+ggml_metal_pipelines_t ggml_metal_pipelines_init(void) {
+ ggml_metal_pipelines_t res = new ggml_metal_pipelines();
+
+ return res;
+}
+
+void ggml_metal_pipelines_free(ggml_metal_pipelines_t ppls) {
+ for (auto it = ppls->data.begin(); it != ppls->data.end(); ++it) {
+ ggml_metal_pipeline_free(it->second);
+ }
+
+ delete ppls;
+}
+
+void ggml_metal_pipelines_add(ggml_metal_pipelines_t ppls, const char * name, ggml_metal_pipeline_t pipeline) {
+ ppls->data[name] = pipeline;
+}
+
+ggml_metal_pipeline_t ggml_metal_pipelines_get(ggml_metal_pipelines_t ppls, const char * name) {
+ if (ppls->data.find(name) == ppls->data.end()) {
+ return nullptr;
+ }
+
+ return ppls->data[name];
+}
+
+ggml_metal_pipeline_t ggml_metal_library_get_pipeline_base(ggml_metal_library_t lib, ggml_op op) {
+ char base[256];
+ char name[256];
+
+ const char * op_str = "undefined";
+ switch (op) {
+ case GGML_OP_ADD_ID: op_str = "add_id"; break;
+ case GGML_OP_CONCAT: op_str = "concat"; break;
+ default: GGML_ABORT("fatal error");
+ };
+
+ snprintf(base, 256, "kernel_%s", op_str);
+ snprintf(name, 256, "%s", base);
+
+ ggml_metal_pipeline_t res = ggml_metal_library_get_pipeline(lib, name);
+ if (res) {
+ return res;
+ }
+
+ res = ggml_metal_library_compile_pipeline(lib, base, name, nullptr);
+
+ return res;
+}
+
+ggml_metal_pipeline_t ggml_metal_library_get_pipeline_cpy(ggml_metal_library_t lib, ggml_type tsrc, ggml_type tdst) {
+ char base[256];
+ char name[256];
+
+ snprintf(base, 256, "kernel_cpy_%s_%s", ggml_type_name(tsrc), ggml_type_name(tdst));
+ snprintf(name, 256, "%s", base);
+
+ ggml_metal_pipeline_t res = ggml_metal_library_get_pipeline(lib, name);
+ if (res) {
+ return res;
+ }
+
+ res = ggml_metal_library_compile_pipeline(lib, base, name, nullptr);
+
+ return res;
+}
+
+ggml_metal_pipeline_t ggml_metal_library_get_pipeline_pool_2d(ggml_metal_library_t lib, const ggml_tensor * op, ggml_op_pool op_pool) {
+ GGML_ASSERT(ggml_is_contiguous(op->src[0]));
+ GGML_ASSERT(op->src[0]->type == GGML_TYPE_F32 && op->src[0]->type == op->type);
+
+ const char * pool_str = "undefined";
+ switch (op_pool) {
+ case GGML_OP_POOL_AVG: pool_str = "avg"; break;
+ case GGML_OP_POOL_MAX: pool_str = "max"; break;
+ default: GGML_ASSERT(false && "not implemented");
+ };
+
+ char base[256];
+ char name[256];
+
+ snprintf(base, 256, "kernel_pool_2d_%s_%s", pool_str, ggml_type_name(op->src[0]->type));
+ snprintf(name, 256, "%s", base);
+
+ ggml_metal_pipeline_t res = ggml_metal_library_get_pipeline(lib, name);
+ if (res) {
+ return res;
+ }
+
+ res = ggml_metal_library_compile_pipeline(lib, base, name, nullptr);
+
+ return res;
+}
+
+ggml_metal_pipeline_t ggml_metal_library_get_pipeline_get_rows(ggml_metal_library_t lib, ggml_type tsrc) {
+ char base[256];
+ char name[256];
+
+ snprintf(base, 256, "kernel_get_rows_%s", ggml_type_name(tsrc));
+ snprintf(name, 256, "%s", base);
+
+ ggml_metal_pipeline_t res = ggml_metal_library_get_pipeline(lib, name);
+ if (res) {
+ return res;
+ }
+
+ res = ggml_metal_library_compile_pipeline(lib, base, name, nullptr);
+
+ return res;
+}
+
+ggml_metal_pipeline_t ggml_metal_library_get_pipeline_set_rows(ggml_metal_library_t lib, ggml_type tdst) {
+ char base[256];
+ char name[256];
+
+ snprintf(base, 256, "kernel_set_rows_%s", ggml_type_name(tdst));
+ snprintf(name, 256, "%s", base);
+
+ ggml_metal_pipeline_t res = ggml_metal_library_get_pipeline(lib, name);
+ if (res) {
+ return res;
+ }
+
+ res = ggml_metal_library_compile_pipeline(lib, base, name, nullptr);
+
+ return res;
+}
+
+ggml_metal_pipeline_t ggml_metal_library_get_pipeline_repeat(ggml_metal_library_t lib, ggml_type tsrc) {
+ char base[256];
+ char name[256];
+
+ snprintf(base, 256, "kernel_repeat_%s", ggml_type_name(tsrc));
+ snprintf(name, 256, "%s", base);
+
+ ggml_metal_pipeline_t res = ggml_metal_library_get_pipeline(lib, name);
+ if (res) {
+ return res;
+ }
+
+ res = ggml_metal_library_compile_pipeline(lib, base, name, nullptr);
+
+ return res;
+}
+
+ggml_metal_pipeline_t ggml_metal_library_get_pipeline_unary(ggml_metal_library_t lib, const ggml_tensor * op) {
+ GGML_ASSERT(ggml_is_contiguous(op->src[0]));
+
+ char base[256];
+ char name[256];
+
+ const int64_t n = ggml_nelements(op);
+
+ const char * op_str = "undefined";
+ switch (op->op) {
+ case GGML_OP_SCALE: op_str = "scale"; break;
+ case GGML_OP_CLAMP: op_str = "clamp"; break;
+ case GGML_OP_SQR: op_str = "sqr"; break;
+ case GGML_OP_SQRT: op_str = "sqrt"; break;
+ case GGML_OP_SIN: op_str = "sin"; break;
+ case GGML_OP_COS: op_str = "cos"; break;
+ case GGML_OP_LOG: op_str = "log"; break;
+ case GGML_OP_LEAKY_RELU: op_str = "leaky_relu"; break;
+ case GGML_OP_UNARY:
+ switch (ggml_get_unary_op(op)) {
+ case GGML_UNARY_OP_TANH: op_str = "tanh"; break;
+ case GGML_UNARY_OP_RELU: op_str = "relu"; break;
+ case GGML_UNARY_OP_SIGMOID: op_str = "sigmoid"; break;
+ case GGML_UNARY_OP_GELU: op_str = "gelu"; break;
+ case GGML_UNARY_OP_GELU_ERF: op_str = "gelu_erf"; break;
+ case GGML_UNARY_OP_GELU_QUICK: op_str = "gelu_quick"; break;
+ case GGML_UNARY_OP_SILU: op_str = "silu"; break;
+ case GGML_UNARY_OP_ELU: op_str = "elu"; break;
+ case GGML_UNARY_OP_NEG: op_str = "neg"; break;
+ case GGML_UNARY_OP_ABS: op_str = "abs"; break;
+ case GGML_UNARY_OP_SGN: op_str = "sgn"; break;
+ case GGML_UNARY_OP_STEP: op_str = "step"; break;
+ case GGML_UNARY_OP_HARDSWISH: op_str = "hardswish"; break;
+ case GGML_UNARY_OP_HARDSIGMOID: op_str = "hardsigmoid"; break;
+ case GGML_UNARY_OP_EXP: op_str = "exp"; break;
+ default: GGML_ABORT("fatal error");
+ } break;
+ default: GGML_ABORT("fatal error");
+ };
+
+ const char * suffix = "";
+ if (n % 4 == 0) {
+ suffix = "_4";
+ }
+
+ snprintf(base, 256, "kernel_%s_%s%s", op_str, ggml_type_name(op->src[0]->type), suffix);
+ snprintf(name, 256, "%s", base);
+
+ ggml_metal_pipeline_t res = ggml_metal_library_get_pipeline(lib, name);
+ if (res) {
+ return res;
+ }
+
+ res = ggml_metal_library_compile_pipeline(lib, base, name, nullptr);
+
+ return res;
+}
+
+ggml_metal_pipeline_t ggml_metal_library_get_pipeline_glu(ggml_metal_library_t lib, const ggml_tensor * op) {
+ GGML_ASSERT(ggml_is_contiguous_1(op->src[0]));
+
+ char base[256];
+ char name[256];
+
+ const char * op_str = "undefined";
+ switch (op->op) {
+ case GGML_OP_GLU:
+ switch (ggml_get_glu_op(op)) {
+ case GGML_GLU_OP_REGLU: op_str = "reglu"; break;
+ case GGML_GLU_OP_GEGLU: op_str = "geglu"; break;
+ case GGML_GLU_OP_SWIGLU: op_str = "swiglu"; break;
+ case GGML_GLU_OP_SWIGLU_OAI: op_str = "swiglu_oai"; break;
+ case GGML_GLU_OP_GEGLU_ERF: op_str = "geglu_erf"; break;
+ case GGML_GLU_OP_GEGLU_QUICK: op_str = "geglu_quick"; break;
+ default: GGML_ABORT("fatal error");
+ } break;
+ default: GGML_ABORT("fatal error");
+ };
+
+ snprintf(base, 256, "kernel_%s_%s", op_str, ggml_type_name(op->src[0]->type));
+ snprintf(name, 256, "%s", base);
+
+ ggml_metal_pipeline_t res = ggml_metal_library_get_pipeline(lib, name);
+ if (res) {
+ return res;
+ }
+
+ res = ggml_metal_library_compile_pipeline(lib, base, name, nullptr);
+
+ return res;
+}
+
+ggml_metal_pipeline_t ggml_metal_library_get_pipeline_sum_rows(ggml_metal_library_t lib, const ggml_tensor * op) {
+ GGML_ASSERT(op->src[0]->nb[0] == ggml_type_size(op->src[0]->type));
+
+ char base[256];
+ char name[256];
+
+ const char * op_str = "undefined";
+ switch (op->op) {
+ case GGML_OP_SUM_ROWS:
+ op_str = "sum_rows"; break;
+ case GGML_OP_MEAN:
+ op_str = "mean"; break;
+ default: GGML_ABORT("fatal error");
+ };
+
+ snprintf(base, 256, "kernel_%s_%s", op_str, ggml_type_name(op->src[0]->type));
+
+ snprintf(name, 256, "%s", base);
+
+ ggml_metal_pipeline_t res = ggml_metal_library_get_pipeline(lib, name);
+ if (res) {
+ return res;
+ }
+
+ res = ggml_metal_library_compile_pipeline(lib, base, name, nullptr);
+
+ ggml_metal_pipeline_set_smem(res, 32*sizeof(float));
+
+ return res;
+}
+
+ggml_metal_pipeline_t ggml_metal_library_get_pipeline_soft_max(ggml_metal_library_t lib, const ggml_tensor * op) {
+ GGML_ASSERT(!op->src[1] || op->src[1]->type == GGML_TYPE_F16 || op->src[1]->type == GGML_TYPE_F32);
+
+ char base[256];
+ char name[256];
+
+ const char * suffix = "";
+
+ if (op->src[0]->ne[0] % 4 == 0) {
+ suffix = "_4";
+ }
+
+ const ggml_type tsrc1 = op->src[1] ? op->src[1]->type : GGML_TYPE_F32;
+
+ snprintf(base, 256, "kernel_soft_max_%s%s", ggml_type_name(tsrc1), suffix);
+ snprintf(name, 256, "%s", base);
+
+ ggml_metal_pipeline_t res = ggml_metal_library_get_pipeline(lib, name);
+ if (res) {
+ return res;
+ }
+
+ res = ggml_metal_library_compile_pipeline(lib, base, name, nullptr);
+
+ ggml_metal_pipeline_set_smem(res, 32*sizeof(float));
+
+ return res;
+}
+
+ggml_metal_pipeline_t ggml_metal_library_get_pipeline_ssm_conv(ggml_metal_library_t lib, const ggml_tensor * op) {
+ GGML_ASSERT(op->src[0]->type == GGML_TYPE_F32);
+ GGML_ASSERT(op->src[1]->type == GGML_TYPE_F32);
+
+ GGML_ASSERT(ggml_is_contiguous(op->src[0]));
+ GGML_ASSERT(ggml_is_contiguous(op->src[1]));
+
+ char base[256];
+ char name[256];
+
+ snprintf(base, 256, "kernel_ssm_conv_%s_%s", ggml_type_name(op->src[0]->type), ggml_type_name(op->src[1]->type));
+ snprintf(name, 256, "%s", base);
+
+ ggml_metal_pipeline_t res = ggml_metal_library_get_pipeline(lib, name);
+ if (res) {
+ return res;
+ }
+
+ res = ggml_metal_library_compile_pipeline(lib, base, name, nullptr);
+
+ return res;
+}
+
+ggml_metal_pipeline_t ggml_metal_library_get_pipeline_ssm_scan(ggml_metal_library_t lib, const ggml_tensor * op) {
+ char base[256];
+ char name[256];
+
+ if (op->src[3]->ne[0] == 1) {
+ snprintf(base, 256, "kernel_ssm_scan_group_%s", ggml_type_name(op->src[0]->type));
+ } else {
+ snprintf(base, 256, "kernel_ssm_scan_%s", ggml_type_name(op->src[0]->type));
+ }
+ snprintf(name, 256, "%s", base);
+
+ ggml_metal_pipeline_t res = ggml_metal_library_get_pipeline(lib, name);
+ if (res) {
+ return res;
+ }
+
+ res = ggml_metal_library_compile_pipeline(lib, base, name, nullptr);
+
+ ggml_metal_pipeline_set_smem(res, 32*sizeof(float));
+
+ return res;
+}
+
+ggml_metal_pipeline_t ggml_metal_library_get_pipeline_rwkv(ggml_metal_library_t lib, const ggml_tensor * op) {
+ char base[256];
+ char name[256];
+
+ const int64_t C = op->ne[0];
+ const int64_t H = op->src[0]->ne[1];
+
+ switch (op->op) {
+ case GGML_OP_RWKV_WKV6:
+ {
+ GGML_ASSERT(op->src[5]->type == GGML_TYPE_F32);
+ GGML_ASSERT(C % H == 0);
+ GGML_ASSERT(C / H == 64);
+
+ snprintf(base, 256, "kernel_rwkv_wkv6_%s", ggml_type_name(op->src[0]->type));
+ } break;
+ case GGML_OP_RWKV_WKV7:
+ {
+ GGML_ASSERT(op->src[6]->type == GGML_TYPE_F32);
+ GGML_ASSERT(C % H == 0);
+ GGML_ASSERT(C / H == 64);
+
+ snprintf(base, 256, "kernel_rwkv_wkv7_%s", ggml_type_name(op->src[0]->type));
+ } break;
+ default:
+ GGML_ABORT("fatal error");
+ }
+
+ snprintf(name, 256, "%s", base);
+
+ ggml_metal_pipeline_t res = ggml_metal_library_get_pipeline(lib, name);
+ if (res) {
+ return res;
+ }
+
+ res = ggml_metal_library_compile_pipeline(lib, base, name, nullptr);
+
+ return res;
+}
+
+ggml_metal_pipeline_t ggml_metal_library_get_pipeline_mul_mv_ext(ggml_metal_library_t lib, ggml_type tsrc0, ggml_type tsrc1, int r1ptg) {
+ char base[256];
+ char name[256];
+
+ snprintf(base, 256, "kernel_mul_mv_ext_%s_%s_r1_%d", ggml_type_name(tsrc0), ggml_type_name(tsrc1), r1ptg);
+ snprintf(name, 256, "%s", base);
+
+ ggml_metal_pipeline_t res = ggml_metal_library_get_pipeline(lib, name);
+ if (res) {
+ return res;
+ }
+
+ res = ggml_metal_library_compile_pipeline(lib, base, name, nullptr);
+
+ return res;
+}
+
+ggml_metal_pipeline_t ggml_metal_library_get_pipeline_mul_mm(ggml_metal_library_t lib, ggml_type tsrc0, ggml_type tsrc1) {
+ char base[256];
+ char name[256];
+
+ snprintf(base, 256, "kernel_mul_mm_%s_%s", ggml_type_name(tsrc0), ggml_type_name(tsrc1));
+ snprintf(name, 256, "%s", base);
+
+ ggml_metal_pipeline_t res = ggml_metal_library_get_pipeline(lib, name);
+ if (res) {
+ return res;
+ }
+
+ res = ggml_metal_library_compile_pipeline(lib, base, name, nullptr);
+
+ ggml_metal_pipeline_set_smem(res, 8192);
+
+ return res;
+}
+
+ggml_metal_pipeline_t ggml_metal_library_get_pipeline_mul_mv(ggml_metal_library_t lib, const ggml_tensor * op) {
+ GGML_TENSOR_LOCALS( int32_t, ne0, op->src[0], ne);
+ GGML_TENSOR_LOCALS( int32_t, ne1, op->src[1], ne);
+
+ char base[256];
+ char name[256];
+
+ int nsg = 0; // number of simdgroups
+ int nr0 = 0; // number of src0 rows per simdgroup
+ int nr1 = 1; // number of src1 rows per threadgroup
+
+ size_t smem = 0; // shared memory
+
+ const ggml_type tsrc0 = op->src[0]->type;
+ const ggml_type tsrc1 = op->src[1]->type;
+
+ const char * suffix = "";
+
+ // use custom matrix x vector kernel
+ switch (tsrc0) {
+ case GGML_TYPE_F32:
+ {
+ GGML_ASSERT(op->src[1]->type == GGML_TYPE_F32);
+
+ nsg = 1;
+ nr0 = 1;
+ nr1 = 4;
+ if (ne00 == 4) {
+ nr0 = 32;
+ suffix = "_c4";
+ }
+ } break;
+ case GGML_TYPE_F16:
+ case GGML_TYPE_BF16:
+ {
+ nsg = 1;
+ nr0 = 1;
+ if (op->src[1]->type == GGML_TYPE_F32) {
+ if (ne00 == 4) {
+ nr0 = 32;
+ nr1 = 4;
+ suffix = "_c4";
+ } else if (ne11 * ne12 < 4) {
+ suffix = "_1row";
+ } else if (ne00 >= 128 && ne01 >= 8 && ne00%4 == 0) {
+ suffix = "_l4";
+ nr1 = ne11;
+ } else {
+ nr1 = 4;
+ }
+ } else {
+ nr1 = 4;
+ }
+ } break;
+ case GGML_TYPE_Q4_0:
+ {
+ nsg = N_SG_Q4_0;
+ nr0 = N_R0_Q4_0;
+ } break;
+ case GGML_TYPE_Q4_1:
+ {
+ nsg = N_SG_Q4_1;
+ nr0 = N_R0_Q4_1;
+ } break;
+ case GGML_TYPE_Q5_0:
+ {
+ nsg = N_SG_Q5_0;
+ nr0 = N_R0_Q5_0;
+ } break;
+ case GGML_TYPE_Q5_1:
+ {
+ nsg = N_SG_Q5_1;
+ nr0 = N_R0_Q5_1;
+ } break;
+ case GGML_TYPE_Q8_0:
+ {
+ nsg = N_SG_Q8_0;
+ nr0 = N_R0_Q8_0;
+ smem = 32*sizeof(float)*N_R0_Q8_0;
+ } break;
+ case GGML_TYPE_MXFP4:
+ {
+ nsg = N_SG_MXFP4;
+ nr0 = N_R0_MXFP4;
+ smem = 32*sizeof(float);
+ } break;
+ case GGML_TYPE_Q2_K:
+ {
+ nsg = N_SG_Q2_K;
+ nr0 = N_R0_Q2_K;
+ } break;
+ case GGML_TYPE_Q3_K:
+ {
+ nsg = N_SG_Q3_K;
+ nr0 = N_R0_Q3_K;
+ } break;
+ case GGML_TYPE_Q4_K:
+ {
+ nsg = N_SG_Q4_K;
+ nr0 = N_R0_Q4_K;
+ } break;
+ case GGML_TYPE_Q5_K:
+ {
+ nsg = N_SG_Q5_K;
+ nr0 = N_R0_Q5_K;
+ } break;
+ case GGML_TYPE_Q6_K:
+ {
+ nsg = N_SG_Q6_K;
+ nr0 = N_R0_Q6_K;
+ } break;
+ case GGML_TYPE_IQ2_XXS:
+ {
+ nsg = N_SG_IQ2_XXS;
+ nr0 = N_R0_IQ2_XXS;
+ smem = 256*8+128;
+ } break;
+ case GGML_TYPE_IQ2_XS:
+ {
+ nsg = N_SG_IQ2_XS;
+ nr0 = N_R0_IQ2_XS;
+ smem = 512*8+128;
+ } break;
+ case GGML_TYPE_IQ3_XXS:
+ {
+ nsg = N_SG_IQ3_XXS;
+ nr0 = N_R0_IQ3_XXS;
+ smem = 256*4+128;
+ } break;
+ case GGML_TYPE_IQ3_S:
+ {
+ nsg = N_SG_IQ3_S;
+ nr0 = N_R0_IQ3_S;
+ smem = 512*4;
+ } break;
+ case GGML_TYPE_IQ2_S:
+ {
+ nsg = N_SG_IQ2_S;
+ nr0 = N_R0_IQ2_S;
+ } break;
+ case GGML_TYPE_IQ1_S:
+ {
+ nsg = N_SG_IQ1_S;
+ nr0 = N_R0_IQ1_S;
+ } break;
+ case GGML_TYPE_IQ1_M:
+ {
+ nsg = N_SG_IQ1_M;
+ nr0 = N_R0_IQ1_M;
+ } break;
+ case GGML_TYPE_IQ4_NL:
+ {
+ nsg = N_SG_IQ4_NL;
+ nr0 = N_R0_IQ4_NL;
+ smem = 32*sizeof(float);
+ } break;
+ case GGML_TYPE_IQ4_XS:
+ {
+ nsg = N_SG_IQ4_XS;
+ nr0 = N_R0_IQ4_XS;
+ smem = 32*sizeof(float);
+ } break;
+ default:
+ {
+ GGML_LOG_ERROR("Asserting on type %d\n", (int) tsrc0);
+ GGML_ABORT("not implemented");
+ }
+ };
+
+ snprintf(base, 256, "kernel_mul_mv_%s_%s%s", ggml_type_name(tsrc0), ggml_type_name(tsrc1), suffix);
+ snprintf(name, 256, "%s", base);
+
+ ggml_metal_pipeline_t res = ggml_metal_library_get_pipeline(lib, name);
+ if (res) {
+ return res;
+ }
+
+ res = ggml_metal_library_compile_pipeline(lib, base, name, nullptr);
+
+ ggml_metal_pipeline_set_nr0 (res, nr0);
+ ggml_metal_pipeline_set_nr1 (res, nr1);
+ ggml_metal_pipeline_set_nsg (res, nsg);
+ ggml_metal_pipeline_set_smem(res, smem);
+
+ return res;
+}
+
+ggml_metal_pipeline_t ggml_metal_library_get_pipeline_mul_mm_id_map0(ggml_metal_library_t lib, int ne02, int ne20) {
+ char base[256];
+ char name[256];
+
+ snprintf(base, 256, "kernel_mul_mm_id_map0_ne20_%d", ne20);
+ snprintf(name, 256, "%s", base);
+
+ ggml_metal_pipeline_t res = ggml_metal_library_get_pipeline(lib, name);
+ if (res) {
+ return res;
+ }
+
+ res = ggml_metal_library_compile_pipeline(lib, base, name, nullptr);
+
+ const size_t smem = (size_t) ne02*ne20*sizeof(uint16_t);
+
+ ggml_metal_pipeline_set_smem(res, smem);
+
+ return res;
+}
+
+ggml_metal_pipeline_t ggml_metal_library_get_pipeline_mul_mm_id(ggml_metal_library_t lib, ggml_type tsrc0, ggml_type tsrc1) {
+ char base[256];
+ char name[256];
+
+ snprintf(base, 256, "kernel_mul_mm_id_%s_%s", ggml_type_name(tsrc0), ggml_type_name(tsrc1));
+ snprintf(name, 256, "%s", base);
+
+ ggml_metal_pipeline_t res = ggml_metal_library_get_pipeline(lib, name);
+ if (res) {
+ return res;
+ }
+
+ res = ggml_metal_library_compile_pipeline(lib, base, name, nullptr);
+
+ ggml_metal_pipeline_set_smem(res, 8192);
+
+ return res;
+}
+
+ggml_metal_pipeline_t ggml_metal_library_get_pipeline_mul_mv_id(ggml_metal_library_t lib, const ggml_tensor * op) {
+ GGML_TENSOR_LOCALS( int32_t, ne0, op->src[0], ne);
+ GGML_TENSOR_LOCALS( int32_t, ne1, op->src[1], ne);
+
+ char base[256];
+ char name[256];
+
+ int nsg = 0; // number of simdgroups
+ int nr0 = 0; // number of src0 rows per simdgroup
+ int nr1 = 1; // number of src1 rows per threadgroup
+
+ size_t smem = 0; // shared memory
+
+ const ggml_type tsrc0 = op->src[0]->type;
+ const ggml_type tsrc1 = op->src[1]->type;
+
+ // use custom matrix x vector kernel
+ switch (tsrc0) {
+ case GGML_TYPE_F32:
+ {
+ GGML_ASSERT(op->src[1]->type == GGML_TYPE_F32);
+ nsg = 1;
+ nr0 = 1;
+ } break;
+ case GGML_TYPE_F16:
+ {
+ GGML_ASSERT(op->src[1]->type == GGML_TYPE_F32);
+ nsg = 1;
+ nr0 = 1;
+ } break;
+ case GGML_TYPE_BF16:
+ {
+ GGML_ASSERT(op->src[1]->type == GGML_TYPE_F32);
+ nsg = 1;
+ nr0 = 1;
+ } break;
+ case GGML_TYPE_Q4_0:
+ {
+ nsg = N_SG_Q4_0;
+ nr0 = N_R0_Q4_0;
+ } break;
+ case GGML_TYPE_Q4_1:
+ {
+ nsg = N_SG_Q4_1;
+ nr0 = N_R0_Q4_1;
+ } break;
+ case GGML_TYPE_Q5_0:
+ {
+ nsg = N_SG_Q5_0;
+ nr0 = N_R0_Q5_0;
+ } break;
+ case GGML_TYPE_Q5_1:
+ {
+ nsg = N_SG_Q5_1;
+ nr0 = N_R0_Q5_1;
+ } break;
+ case GGML_TYPE_Q8_0:
+ {
+ nsg = N_SG_Q8_0;
+ nr0 = N_R0_Q8_0;
+ smem = 32*sizeof(float)*N_R0_Q8_0;
+ } break;
+ case GGML_TYPE_MXFP4:
+ {
+ nsg = N_SG_MXFP4;
+ nr0 = N_R0_MXFP4;
+ smem = 32*sizeof(float);
+ } break;
+ case GGML_TYPE_Q2_K:
+ {
+ nsg = N_SG_Q2_K;
+ nr0 = N_R0_Q2_K;
+ } break;
+ case GGML_TYPE_Q3_K:
+ {
+ nsg = N_SG_Q3_K;
+ nr0 = N_R0_Q3_K;
+ } break;
+ case GGML_TYPE_Q4_K:
+ {
+ nsg = N_SG_Q4_K;
+ nr0 = N_R0_Q4_K;
+ } break;
+ case GGML_TYPE_Q5_K:
+ {
+ nsg = N_SG_Q5_K;
+ nr0 = N_R0_Q5_K;
+ } break;
+ case GGML_TYPE_Q6_K:
+ {
+ nsg = N_SG_Q6_K;
+ nr0 = N_R0_Q6_K;
+ } break;
+ case GGML_TYPE_IQ2_XXS:
+ {
+ nsg = N_SG_IQ2_XXS;
+ nr0 = N_R0_IQ2_XXS;
+ smem = 256*8+128;
+ } break;
+ case GGML_TYPE_IQ2_XS:
+ {
+ nsg = N_SG_IQ2_XS;
+ nr0 = N_R0_IQ2_XS;
+ smem = 512*8+128;
+ } break;
+ case GGML_TYPE_IQ3_XXS:
+ {
+ nsg = N_SG_IQ3_XXS;
+ nr0 = N_R0_IQ3_XXS;
+ smem = 256*4+128;
+ } break;
+ case GGML_TYPE_IQ3_S:
+ {
+ nsg = N_SG_IQ3_S;
+ nr0 = N_R0_IQ3_S;
+ smem = 512*4;
+ } break;
+ case GGML_TYPE_IQ2_S:
+ {
+ nsg = N_SG_IQ2_S;
+ nr0 = N_R0_IQ2_S;
+ } break;
+ case GGML_TYPE_IQ1_S:
+ {
+ nsg = N_SG_IQ1_S;
+ nr0 = N_R0_IQ1_S;
+ } break;
+ case GGML_TYPE_IQ1_M:
+ {
+ nsg = N_SG_IQ1_M;
+ nr0 = N_R0_IQ1_M;
+ } break;
+ case GGML_TYPE_IQ4_NL:
+ {
+ nsg = N_SG_IQ4_NL;
+ nr0 = N_R0_IQ4_NL;
+ smem = 32*sizeof(float);
+ } break;
+ case GGML_TYPE_IQ4_XS:
+ {
+ nsg = N_SG_IQ4_XS;
+ nr0 = N_R0_IQ4_XS;
+ smem = 32*sizeof(float);
+ } break;
+ default:
+ {
+ GGML_LOG_ERROR("Asserting on type %d\n", (int)op->src[2]->type);
+ GGML_ABORT("not implemented");
+ }
+ };
+
+ snprintf(base, 256, "kernel_mul_mv_id_%s_%s", ggml_type_name(tsrc0), ggml_type_name(tsrc1));
+ snprintf(name, 256, "%s", base);
+
+ ggml_metal_pipeline_t res = ggml_metal_library_get_pipeline(lib, name);
+ if (res) {
+ return res;
+ }
+
+ res = ggml_metal_library_compile_pipeline(lib, base, name, nullptr);
+
+ ggml_metal_pipeline_set_nr0 (res, nr0);
+ ggml_metal_pipeline_set_nr1 (res, nr1);
+ ggml_metal_pipeline_set_nsg (res, nsg);
+ ggml_metal_pipeline_set_smem(res, smem);
+
+ return res;
+}
+
+ggml_metal_pipeline_t ggml_metal_library_get_pipeline_argmax(ggml_metal_library_t lib, const ggml_tensor * op) {
+ GGML_ASSERT(op->src[0]->type == GGML_TYPE_F32);
+ GGML_ASSERT(ggml_is_contiguous_1(op->src[0]));
+ GGML_ASSERT(op->src[0]->nb[0] == ggml_type_size(op->src[0]->type));
+
+ char base[256];
+ char name[256];
+
+ snprintf(base, 256, "kernel_argmax_%s", ggml_type_name(op->src[0]->type));
+ snprintf(name, 256, "%s", base);
+
+ ggml_metal_pipeline_t res = ggml_metal_library_get_pipeline(lib, name);
+ if (res) {
+ return res;
+ }
+
+ res = ggml_metal_library_compile_pipeline(lib, base, name, nullptr);
+
+ ggml_metal_pipeline_set_smem(res, 32*(sizeof(float) + sizeof(int32_t)));
+
+ return res;
+}
+
+ggml_metal_pipeline_t ggml_metal_library_get_pipeline_argsort(ggml_metal_library_t lib, const ggml_tensor * op) {
+ assert(op->op == GGML_OP_ARGSORT);
+
+ char base[256];
+ char name[256];
+
+ ggml_sort_order order = (ggml_sort_order) op->op_params[0];
+
+ const char * order_str = "undefined";
+ switch (order) {
+ case GGML_SORT_ORDER_ASC: order_str = "asc"; break;
+ case GGML_SORT_ORDER_DESC: order_str = "desc"; break;
+ default: GGML_ABORT("fatal error");
+ };
+
+ snprintf(base, 256, "kernel_argsort_%s_%s_%s", ggml_type_name(op->src[0]->type), ggml_type_name(op->type), order_str);
+ snprintf(name, 256, "%s", base);
+
+ ggml_metal_pipeline_t res = ggml_metal_library_get_pipeline(lib, name);
+ if (res) {
+ return res;
+ }
+
+ res = ggml_metal_library_compile_pipeline(lib, base, name, nullptr);
+
+ return res;
+}
+
+ggml_metal_pipeline_t ggml_metal_library_get_pipeline_flash_attn_ext(
+ ggml_metal_library_t lib,
+ const ggml_tensor * op,
+ bool has_mask,
+ bool has_sinks,
+ bool has_bias,
+ bool has_scap,
+ int32_t nsg) {
+ assert(op->op == GGML_OP_FLASH_ATTN_EXT);
+
+ char base[256];
+ char name[256];
+
+ const int32_t dk = (int32_t) op->src[1]->ne[0];
+ const int32_t dv = (int32_t) op->src[2]->ne[0];
+
+ const int32_t ns10 = op->src[1]->nb[1]/op->src[1]->nb[0];
+ const int32_t ns20 = op->src[2]->nb[1]/op->src[2]->nb[0];
+
+ snprintf(base, 256, "kernel_%s_%s_dk%d_dv%d",
+ "flash_attn_ext",
+ ggml_type_name(op->src[1]->type),
+ dk,
+ dv);
+
+ snprintf(name, 256, "kernel_%s_%s_dk%d_dv%d_mask=%d_sinks=%d_bias=%d_scap=%d_ns10=%d_ns20=%d_nsg=%d",
+ "flash_attn_ext",
+ ggml_type_name(op->src[1]->type),
+ dk,
+ dv,
+ has_mask,
+ has_sinks,
+ has_bias,
+ has_scap,
+ ns10,
+ ns20,
+ nsg);
+
+ ggml_metal_pipeline_t res = ggml_metal_library_get_pipeline(lib, name);
+ if (res) {
+ return res;
+ }
+
+ ggml_metal_cv_t cv = ggml_metal_cv_init();
+
+ ggml_metal_cv_set_bool(cv, has_mask, FC_FLASH_ATTN_EXT + 0);
+ ggml_metal_cv_set_bool(cv, has_sinks, FC_FLASH_ATTN_EXT + 1);
+ ggml_metal_cv_set_bool(cv, has_bias, FC_FLASH_ATTN_EXT + 2);
+ ggml_metal_cv_set_bool(cv, has_scap, FC_FLASH_ATTN_EXT + 3);
+
+ ggml_metal_cv_set_int32(cv, ns10, FC_FLASH_ATTN_EXT + 20);
+ ggml_metal_cv_set_int32(cv, ns20, FC_FLASH_ATTN_EXT + 21);
+ ggml_metal_cv_set_int32(cv, nsg, FC_FLASH_ATTN_EXT + 22);
+
+ res = ggml_metal_library_compile_pipeline(lib, base, name, cv);
+
+ ggml_metal_cv_free(cv);
+
+ return res;
+}
+
+ggml_metal_pipeline_t ggml_metal_library_get_pipeline_flash_attn_ext_vec(
+ ggml_metal_library_t lib,
+ const ggml_tensor * op,
+ bool has_mask,
+ bool has_sinks,
+ bool has_bias,
+ bool has_scap,
+ int32_t nsg,
+ int32_t nwg) {
+ assert(op->op == GGML_OP_FLASH_ATTN_EXT);
+
+ char base[256];
+ char name[256];
+
+ const int32_t dk = (int32_t) op->src[1]->ne[0];
+ const int32_t dv = (int32_t) op->src[2]->ne[0];
+
+ const int32_t ns10 = op->src[1]->nb[1]/op->src[1]->nb[0];
+ const int32_t ns20 = op->src[2]->nb[1]/op->src[2]->nb[0];
+
+ snprintf(base, 256, "kernel_%s_%s_dk%d_dv%d",
+ "flash_attn_ext_vec",
+ ggml_type_name(op->src[1]->type),
+ dk,
+ dv);
+
+ snprintf(name, 256, "kernel_%s_%s_dk%d_dv%d_mask=%d_sink=%d_bias=%d_softcap=%d_ns10=%d_ns20=%d_nsg=%d_nwg=%d",
+ "flash_attn_ext_vec",
+ ggml_type_name(op->src[1]->type),
+ dk,
+ dv,
+ has_mask,
+ has_sinks,
+ has_bias,
+ has_scap,
+ ns10,
+ ns20,
+ nsg, nwg);
+
+ ggml_metal_pipeline_t res = ggml_metal_library_get_pipeline(lib, name);
+ if (res) {
+ return res;
+ }
+
+ ggml_metal_cv_t cv = ggml_metal_cv_init();
+
+ ggml_metal_cv_set_bool(cv, has_mask, FC_FLASH_ATTN_EXT_VEC + 0);
+ ggml_metal_cv_set_bool(cv, has_sinks, FC_FLASH_ATTN_EXT_VEC + 1);
+ ggml_metal_cv_set_bool(cv, has_bias, FC_FLASH_ATTN_EXT_VEC + 2);
+ ggml_metal_cv_set_bool(cv, has_scap, FC_FLASH_ATTN_EXT_VEC + 3);
+
+ ggml_metal_cv_set_int32(cv, ns10, FC_FLASH_ATTN_EXT_VEC + 20);
+ ggml_metal_cv_set_int32(cv, ns20, FC_FLASH_ATTN_EXT_VEC + 21);
+ ggml_metal_cv_set_int32(cv, nsg, FC_FLASH_ATTN_EXT_VEC + 22);
+ ggml_metal_cv_set_int32(cv, nwg, FC_FLASH_ATTN_EXT_VEC + 23);
+
+ res = ggml_metal_library_compile_pipeline(lib, base, name, cv);
+
+ ggml_metal_cv_free(cv);
+
+ return res;
+}
+
+ggml_metal_pipeline_t ggml_metal_library_get_pipeline_flash_attn_ext_vec_reduce(
+ ggml_metal_library_t lib,
+ const ggml_tensor * op,
+ int32_t dv,
+ int32_t nwg) {
+ assert(op->op == GGML_OP_FLASH_ATTN_EXT);
+
+ char base[256];
+ char name[256];
+
+ snprintf(base, 256, "kernel_flash_attn_ext_vec_reduce");
+ snprintf(name, 256, "kernel_flash_attn_ext_vec_reduce_dv=%d_nwg=%d", dv, nwg);
+
+ ggml_metal_pipeline_t res = ggml_metal_library_get_pipeline(lib, name);
+ if (res) {
+ return res;
+ }
+
+ ggml_metal_cv_t cv = ggml_metal_cv_init();
+
+ ggml_metal_cv_set_int32(cv, dv, FC_FLASH_ATTN_EXT_VEC_REDUCE + 0);
+ ggml_metal_cv_set_int32(cv, nwg, FC_FLASH_ATTN_EXT_VEC_REDUCE + 1);
+
+ res = ggml_metal_library_compile_pipeline(lib, base, name, cv);
+
+ ggml_metal_cv_free(cv);
+
+ return res;
+
+ GGML_UNUSED(op);
+}
+
+ggml_metal_pipeline_t ggml_metal_library_get_pipeline_bin(
+ ggml_metal_library_t lib,
+ ggml_op op,
+ int32_t n_fuse,
+ bool row) {
+ char base[256];
+ char name[256];
+
+ const char * op_str = "undefined";
+ switch (op) {
+ case GGML_OP_ADD: op_str = "add"; break;
+ case GGML_OP_SUB: op_str = "sub"; break;
+ case GGML_OP_MUL: op_str = "mul"; break;
+ case GGML_OP_DIV: op_str = "div"; break;
+ default: GGML_ABORT("fatal error");
+ };
+
+ if (row) {
+ snprintf(base, 256, "kernel_%s_row_c4_fuse_%d", op_str, n_fuse);
+ } else {
+ snprintf(base, 256, "kernel_%s_fuse_%d", op_str, n_fuse);
+ }
+
+ snprintf(name, 256, "%s", base);
+
+ ggml_metal_pipeline_t res = ggml_metal_library_get_pipeline(lib, name);
+ if (res) {
+ return res;
+ }
+
+ res = ggml_metal_library_compile_pipeline(lib, base, name, nullptr);
+
+ return res;
+}
+
+ggml_metal_pipeline_t ggml_metal_library_get_pipeline_rms_norm(ggml_metal_library_t lib, const ggml_tensor * op, int32_t n_fuse) {
+ assert(op->op == GGML_OP_RMS_NORM);
+
+ GGML_ASSERT(op->src[0]->ne[0] % 4 == 0);
+ GGML_ASSERT(ggml_is_contiguous_rows(op->src[0]));
+
+ char base[256];
+ char name[256];
+
+ switch (n_fuse) {
+ case 1: snprintf(base, 256, "kernel_rms_norm_f32"); break;
+ case 2: snprintf(base, 256, "kernel_rms_norm_mul_f32"); break;
+ case 3: snprintf(base, 256, "kernel_rms_norm_mul_add_f32"); break;
+ default: GGML_ABORT("fatal error");
+ }
+
+ snprintf(name, 256, "%s", base);
+
+ ggml_metal_pipeline_t res = ggml_metal_library_get_pipeline(lib, name);
+ if (res) {
+ return res;
+ }
+
+ res = ggml_metal_library_compile_pipeline(lib, base, name, nullptr);
+
+ ggml_metal_pipeline_set_smem(res, 32*sizeof(float));
+
+ return res;
+}
+
+ggml_metal_pipeline_t ggml_metal_library_get_pipeline_l2_norm(ggml_metal_library_t lib, const ggml_tensor * op) {
+ assert(op->op == GGML_OP_L2_NORM);
+
+ GGML_ASSERT(op->src[0]->ne[0] % 4 == 0);
+ GGML_ASSERT(ggml_is_contiguous_1(op->src[0]));
+
+ char base[256];
+ char name[256];
+
+ snprintf(base, 256, "kernel_l2_norm_f32");
+ snprintf(name, 256, "%s", base);
+
+ ggml_metal_pipeline_t res = ggml_metal_library_get_pipeline(lib, name);
+ if (res) {
+ return res;
+ }
+
+ res = ggml_metal_library_compile_pipeline(lib, base, name, nullptr);
+
+ ggml_metal_pipeline_set_smem(res, 32*sizeof(float));
+
+ return res;
+}
+
+ggml_metal_pipeline_t ggml_metal_library_get_pipeline_group_norm(ggml_metal_library_t lib, const ggml_tensor * op) {
+ assert(op->op == GGML_OP_GROUP_NORM);
+
+ GGML_ASSERT(ggml_is_contiguous(op->src[0]));
+
+ char base[256];
+ char name[256];
+
+ snprintf(base, 256, "kernel_group_norm_f32");
+ snprintf(name, 256, "%s", base);
+
+ ggml_metal_pipeline_t res = ggml_metal_library_get_pipeline(lib, name);
+ if (res) {
+ return res;
+ }
+
+ res = ggml_metal_library_compile_pipeline(lib, base, name, nullptr);
+
+ ggml_metal_pipeline_set_smem(res, 32*sizeof(float));
+
+ return res;
+}
+
+ggml_metal_pipeline_t ggml_metal_library_get_pipeline_norm(ggml_metal_library_t lib, const ggml_tensor * op) {
+ assert(op->op == GGML_OP_NORM);
+
+ GGML_ASSERT(op->src[0]->ne[0] % 4 == 0);
+ GGML_ASSERT(ggml_is_contiguous_1(op->src[0]));
+
+ char base[256];
+ char name[256];
+
+ snprintf(base, 256, "kernel_norm_f32");
+ snprintf(name, 256, "%s", base);
+
+ ggml_metal_pipeline_t res = ggml_metal_library_get_pipeline(lib, name);
+ if (res) {
+ return res;
+ }
+
+ res = ggml_metal_library_compile_pipeline(lib, base, name, nullptr);
+
+ ggml_metal_pipeline_set_smem(res, 32*sizeof(float));
+
+ return res;
+}
+
+ggml_metal_pipeline_t ggml_metal_library_get_pipeline_rope(ggml_metal_library_t lib, const ggml_tensor * op) {
+ assert(op->op == GGML_OP_ROPE);
+
+ char base[256];
+ char name[256];
+
+ const int mode = ((const int32_t *) op->op_params)[2];
+
+ const bool is_neox = mode & GGML_ROPE_TYPE_NEOX;
+ const bool is_mrope = mode & GGML_ROPE_TYPE_MROPE;
+ const bool is_vision = mode == GGML_ROPE_TYPE_VISION;
+
+ if (is_neox) {
+ snprintf(base, 256, "kernel_rope_neox_%s", ggml_type_name(op->src[0]->type));
+ } else if (is_mrope && !is_vision) {
+ GGML_ASSERT(op->src[1]->ne[0]*4 >= op->src[0]->ne[2]); // need at least 4 pos per token
+ snprintf(base, 256, "kernel_rope_multi_%s", ggml_type_name(op->src[0]->type));
+ } else if (is_vision) {
+ GGML_ASSERT(op->src[1]->ne[0]*4 >= op->src[0]->ne[2]); // need at least 4 pos per token
+ snprintf(base, 256, "kernel_rope_vision_%s", ggml_type_name(op->src[0]->type));
+ } else {
+ snprintf(base, 256, "kernel_rope_norm_%s", ggml_type_name(op->src[0]->type));
+ }
+
+ snprintf(name, 256, "%s", base);
+
+ ggml_metal_pipeline_t res = ggml_metal_library_get_pipeline(lib, name);
+ if (res) {
+ return res;
+ }
+
+ res = ggml_metal_library_compile_pipeline(lib, base, name, nullptr);
+
+ return res;
+}
+
+ggml_metal_pipeline_t ggml_metal_library_get_pipeline_im2col(ggml_metal_library_t lib, const ggml_tensor * op) {
+ assert(op->op == GGML_OP_IM2COL);
+
+ GGML_ASSERT(ggml_is_contiguous(op->src[1]));
+ GGML_ASSERT(op->src[1]->type == GGML_TYPE_F32);
+ GGML_ASSERT(op->type == GGML_TYPE_F16 || op->type == GGML_TYPE_F32);
+
+ char base[256];
+ char name[256];
+
+ snprintf(base, 256, "kernel_im2col_ext_%s", ggml_type_name(op->type));
+ snprintf(name, 256, "%s", base);
+
+ ggml_metal_pipeline_t res = ggml_metal_library_get_pipeline(lib, name);
+ if (res) {
+ return res;
+ }
+
+ res = ggml_metal_library_compile_pipeline(lib, base, name, nullptr);
+
+ return res;
+}
+
+ggml_metal_pipeline_t ggml_metal_library_get_pipeline_conv_transpose_1d(ggml_metal_library_t lib, const ggml_tensor * op) {
+ assert(op->op == GGML_OP_CONV_TRANSPOSE_1D);
+
+ GGML_ASSERT(ggml_is_contiguous(op->src[0]));
+ GGML_ASSERT(ggml_is_contiguous(op->src[1]));
+ GGML_ASSERT(op->src[0]->type == GGML_TYPE_F16 || op->src[0]->type == GGML_TYPE_F32);
+ GGML_ASSERT(op->src[1]->type == GGML_TYPE_F32);
+ GGML_ASSERT(op->type == GGML_TYPE_F32);
+
+ char base[256];
+ char name[256];
+
+ snprintf(base, 256, "kernel_conv_transpose_1d_%s_%s", ggml_type_name(op->src[0]->type), ggml_type_name(op->src[1]->type));
+ snprintf(name, 256, "%s", base);
+
+ ggml_metal_pipeline_t res = ggml_metal_library_get_pipeline(lib, name);
+ if (res) {
+ return res;
+ }
+
+ res = ggml_metal_library_compile_pipeline(lib, base, name, nullptr);
+
+ return res;
+}
+
+ggml_metal_pipeline_t ggml_metal_library_get_pipeline_upscale(ggml_metal_library_t lib, const ggml_tensor * op) {
+ assert(op->op == GGML_OP_UPSCALE);
+
+ char base[256];
+ char name[256];
+
+ snprintf(base, 256, "kernel_upscale_%s", ggml_type_name(op->src[0]->type));
+ snprintf(name, 256, "%s", base);
+
+ ggml_metal_pipeline_t res = ggml_metal_library_get_pipeline(lib, name);
+ if (res) {
+ return res;
+ }
+
+ res = ggml_metal_library_compile_pipeline(lib, base, name, nullptr);
+
+ return res;
+}
+
+ggml_metal_pipeline_t ggml_metal_library_get_pipeline_pad(ggml_metal_library_t lib, const ggml_tensor * op) {
+ assert(op->op == GGML_OP_PAD);
+
+ char base[256];
+ char name[256];
+
+ snprintf(base, 256, "kernel_pad_%s", ggml_type_name(op->src[0]->type));
+ snprintf(name, 256, "%s", base);
+
+ ggml_metal_pipeline_t res = ggml_metal_library_get_pipeline(lib, name);
+ if (res) {
+ return res;
+ }
+
+ res = ggml_metal_library_compile_pipeline(lib, base, name, nullptr);
+
+ return res;
+}
+
+ggml_metal_pipeline_t ggml_metal_library_get_pipeline_pad_reflect_1d(ggml_metal_library_t lib, const ggml_tensor * op) {
+ assert(op->op == GGML_OP_PAD_REFLECT_1D);
+
+ char base[256];
+ char name[256];
+
+ snprintf(base, 256, "kernel_pad_reflect_1d_%s", ggml_type_name(op->src[0]->type));
+ snprintf(name, 256, "%s", base);
+
+ ggml_metal_pipeline_t res = ggml_metal_library_get_pipeline(lib, name);
+ if (res) {
+ return res;
+ }
+
+ res = ggml_metal_library_compile_pipeline(lib, base, name, nullptr);
+
+ return res;
+}
+
+ggml_metal_pipeline_t ggml_metal_library_get_pipeline_arange(ggml_metal_library_t lib, const ggml_tensor * op) {
+ assert(op->op == GGML_OP_ARANGE);
+
+ char base[256];
+ char name[256];
+
+ snprintf(base, 256, "kernel_arange_%s", ggml_type_name(op->type));
+ snprintf(name, 256, "%s", base);
+
+ ggml_metal_pipeline_t res = ggml_metal_library_get_pipeline(lib, name);
+ if (res) {
+ return res;
+ }
+
+ res = ggml_metal_library_compile_pipeline(lib, base, name, nullptr);
+
+ return res;
+}
+
+ggml_metal_pipeline_t ggml_metal_library_get_pipeline_timestep_embedding(ggml_metal_library_t lib, const ggml_tensor * op) {
+ assert(op->op == GGML_OP_TIMESTEP_EMBEDDING);
+
+ char base[256];
+ char name[256];
+
+ snprintf(base, 256, "kernel_timestep_embedding_%s", ggml_type_name(op->src[0]->type));
+ snprintf(name, 256, "%s", base);
+
+ ggml_metal_pipeline_t res = ggml_metal_library_get_pipeline(lib, name);
+ if (res) {
+ return res;
+ }
+
+ res = ggml_metal_library_compile_pipeline(lib, base, name, nullptr);
+
+ return res;
+}
+
--- /dev/null
+#pragma once
+
+#include "ggml.h"
+
+#ifdef __cplusplus
+extern "C" {
+#endif
+
+struct ggml_metal_buffer_id {
+ void * metal; // id<MTLBuffer>
+ size_t offs;
+};
+
+typedef struct ggml_metal_device * ggml_metal_device_t;
+
+//
+// MTLFunctionConstantValues wrapper
+//
+
+typedef struct ggml_metal_cv * ggml_metal_cv_t;
+
+ggml_metal_cv_t ggml_metal_cv_init(void);
+void ggml_metal_cv_free(ggml_metal_cv_t cv);
+
+void ggml_metal_cv_set_int32(ggml_metal_cv_t cv, int32_t value, int32_t idx);
+void ggml_metal_cv_set_bool (ggml_metal_cv_t cv, bool value, int32_t idx);
+
+//
+// MTLComputePipelineState wrapper
+//
+
+typedef struct ggml_metal_pipeline * ggml_metal_pipeline_t;
+
+ggml_metal_pipeline_t ggml_metal_pipeline_init(void);
+void ggml_metal_pipeline_free(ggml_metal_pipeline_t pipeline);
+
+void ggml_metal_pipeline_set_nsg(ggml_metal_pipeline_t pipeline, int nsg);
+int ggml_metal_pipeline_get_nsg(ggml_metal_pipeline_t pipeline);
+
+void ggml_metal_pipeline_set_nr0(ggml_metal_pipeline_t pipeline, int nr0);
+int ggml_metal_pipeline_get_nr0(ggml_metal_pipeline_t pipeline);
+
+void ggml_metal_pipeline_set_nr1(ggml_metal_pipeline_t pipeline, int nr1);
+int ggml_metal_pipeline_get_nr1(ggml_metal_pipeline_t pipeline);
+
+void ggml_metal_pipeline_set_smem(ggml_metal_pipeline_t pipeline, size_t smem);
+size_t ggml_metal_pipeline_get_smem(ggml_metal_pipeline_t pipeline);
+
+int ggml_metal_pipeline_max_theads_per_threadgroup(ggml_metal_pipeline_t pipeline);
+
+// a collection of pipelines
+typedef struct ggml_metal_pipelines * ggml_metal_pipelines_t;
+
+ggml_metal_pipelines_t ggml_metal_pipelines_init(void);
+void ggml_metal_pipelines_free(ggml_metal_pipelines_t ppls);
+
+void ggml_metal_pipelines_add(ggml_metal_pipelines_t ppls, const char * name, ggml_metal_pipeline_t pipeline);
+ggml_metal_pipeline_t ggml_metal_pipelines_get(ggml_metal_pipelines_t ppls, const char * name);
+
+//
+// MTLCommandBuffer wrapper
+//
+
+typedef void * ggml_metal_cmd_buf_t;
+
+//
+// MTLComputeCommandEncoder wrapper
+//
+
+typedef struct ggml_metal_encoder * ggml_metal_encoder_t;
+
+ggml_metal_encoder_t ggml_metal_encoder_init(ggml_metal_cmd_buf_t cmd_buf_raw, bool concurrent);
+void ggml_metal_encoder_free(ggml_metal_encoder_t encoder);
+
+void ggml_metal_encoder_debug_group_push(ggml_metal_encoder_t encoder, const char * name);
+void ggml_metal_encoder_debug_group_pop (ggml_metal_encoder_t encoder);
+
+void ggml_metal_encoder_set_pipeline(ggml_metal_encoder_t encoder, ggml_metal_pipeline_t pipeline);
+
+void ggml_metal_encoder_set_bytes (ggml_metal_encoder_t encoder, void * data, size_t size, int idx);
+void ggml_metal_encoder_set_buffer(ggml_metal_encoder_t encoder, struct ggml_metal_buffer_id buffer, int idx);
+
+void ggml_metal_encoder_set_threadgroup_memory_size(ggml_metal_encoder_t encoder, size_t size, int idx);
+
+void ggml_metal_encoder_dispatch_threadgroups(ggml_metal_encoder_t encoder, int tg0, int tg1, int tg2, int tptg0, int tptg1, int tptg2);
+
+void ggml_metal_encoder_memory_barrier(ggml_metal_encoder_t encoder);
+
+void ggml_metal_encoder_end_encoding(ggml_metal_encoder_t encoder);
+
+//
+// MTLLibrary wrapper
+//
+
+typedef struct ggml_metal_library * ggml_metal_library_t;
+
+ggml_metal_library_t ggml_metal_library_init(ggml_metal_device_t dev);
+void ggml_metal_library_free(ggml_metal_library_t lib);
+
+ggml_metal_pipeline_t ggml_metal_library_get_pipeline (ggml_metal_library_t lib, const char * name);
+ggml_metal_pipeline_t ggml_metal_library_compile_pipeline(ggml_metal_library_t lib, const char * base, const char * name, ggml_metal_cv_t cv);
+
+ggml_metal_pipeline_t ggml_metal_library_get_pipeline_base (ggml_metal_library_t lib, enum ggml_op op);
+ggml_metal_pipeline_t ggml_metal_library_get_pipeline_cpy (ggml_metal_library_t lib, enum ggml_type tsrc, enum ggml_type tdst);
+ggml_metal_pipeline_t ggml_metal_library_get_pipeline_pool_2d (ggml_metal_library_t lib, const struct ggml_tensor * op, enum ggml_op_pool op_pool);
+ggml_metal_pipeline_t ggml_metal_library_get_pipeline_get_rows (ggml_metal_library_t lib, enum ggml_type tsrc);
+ggml_metal_pipeline_t ggml_metal_library_get_pipeline_set_rows (ggml_metal_library_t lib, enum ggml_type tdst);
+ggml_metal_pipeline_t ggml_metal_library_get_pipeline_repeat (ggml_metal_library_t lib, enum ggml_type tsrc);
+ggml_metal_pipeline_t ggml_metal_library_get_pipeline_unary (ggml_metal_library_t lib, const struct ggml_tensor * op);
+ggml_metal_pipeline_t ggml_metal_library_get_pipeline_glu (ggml_metal_library_t lib, const struct ggml_tensor * op);
+ggml_metal_pipeline_t ggml_metal_library_get_pipeline_sum_rows (ggml_metal_library_t lib, const struct ggml_tensor * op);
+ggml_metal_pipeline_t ggml_metal_library_get_pipeline_soft_max (ggml_metal_library_t lib, const struct ggml_tensor * op);
+ggml_metal_pipeline_t ggml_metal_library_get_pipeline_ssm_conv (ggml_metal_library_t lib, const struct ggml_tensor * op);
+ggml_metal_pipeline_t ggml_metal_library_get_pipeline_ssm_scan (ggml_metal_library_t lib, const struct ggml_tensor * op);
+ggml_metal_pipeline_t ggml_metal_library_get_pipeline_rwkv (ggml_metal_library_t lib, const struct ggml_tensor * op);
+ggml_metal_pipeline_t ggml_metal_library_get_pipeline_mul_mv_ext (ggml_metal_library_t lib, enum ggml_type tsrc0, enum ggml_type tsrc1, int r1ptg);
+ggml_metal_pipeline_t ggml_metal_library_get_pipeline_mul_mm (ggml_metal_library_t lib, enum ggml_type tsrc0, enum ggml_type tsrc1);
+ggml_metal_pipeline_t ggml_metal_library_get_pipeline_mul_mv (ggml_metal_library_t lib, const struct ggml_tensor * op);
+ggml_metal_pipeline_t ggml_metal_library_get_pipeline_mul_mm_id_map0 (ggml_metal_library_t lib, int ne02, int ne20);
+ggml_metal_pipeline_t ggml_metal_library_get_pipeline_mul_mm_id (ggml_metal_library_t lib, enum ggml_type tsrc0, enum ggml_type tsrc1);
+ggml_metal_pipeline_t ggml_metal_library_get_pipeline_mul_mv_id (ggml_metal_library_t lib, const struct ggml_tensor * op);
+ggml_metal_pipeline_t ggml_metal_library_get_pipeline_argmax (ggml_metal_library_t lib, const struct ggml_tensor * op);
+ggml_metal_pipeline_t ggml_metal_library_get_pipeline_argsort (ggml_metal_library_t lib, const struct ggml_tensor * op);
+ggml_metal_pipeline_t ggml_metal_library_get_pipeline_bin (ggml_metal_library_t lib, enum ggml_op op, int32_t n_fuse, bool row);
+ggml_metal_pipeline_t ggml_metal_library_get_pipeline_rms_norm (ggml_metal_library_t lib, const struct ggml_tensor * op, int32_t n_fuse);
+ggml_metal_pipeline_t ggml_metal_library_get_pipeline_l2_norm (ggml_metal_library_t lib, const struct ggml_tensor * op);
+ggml_metal_pipeline_t ggml_metal_library_get_pipeline_group_norm (ggml_metal_library_t lib, const struct ggml_tensor * op);
+ggml_metal_pipeline_t ggml_metal_library_get_pipeline_norm (ggml_metal_library_t lib, const struct ggml_tensor * op);
+ggml_metal_pipeline_t ggml_metal_library_get_pipeline_rope (ggml_metal_library_t lib, const struct ggml_tensor * op);
+ggml_metal_pipeline_t ggml_metal_library_get_pipeline_im2col (ggml_metal_library_t lib, const struct ggml_tensor * op);
+ggml_metal_pipeline_t ggml_metal_library_get_pipeline_conv_transpose_1d (ggml_metal_library_t lib, const struct ggml_tensor * op);
+ggml_metal_pipeline_t ggml_metal_library_get_pipeline_upscale (ggml_metal_library_t lib, const struct ggml_tensor * op);
+ggml_metal_pipeline_t ggml_metal_library_get_pipeline_pad (ggml_metal_library_t lib, const struct ggml_tensor * op);
+ggml_metal_pipeline_t ggml_metal_library_get_pipeline_pad_reflect_1d (ggml_metal_library_t lib, const struct ggml_tensor * op);
+ggml_metal_pipeline_t ggml_metal_library_get_pipeline_arange (ggml_metal_library_t lib, const struct ggml_tensor * op);
+ggml_metal_pipeline_t ggml_metal_library_get_pipeline_timestep_embedding(ggml_metal_library_t lib, const struct ggml_tensor * op);
+
+ggml_metal_pipeline_t ggml_metal_library_get_pipeline_flash_attn_ext(
+ ggml_metal_library_t lib,
+ const struct ggml_tensor * op,
+ bool has_mask,
+ bool has_sinks,
+ bool has_bias,
+ bool has_scap,
+ int32_t nsg);
+
+ggml_metal_pipeline_t ggml_metal_library_get_pipeline_flash_attn_ext_vec(
+ ggml_metal_library_t lib,
+ const struct ggml_tensor * op,
+ bool has_mask,
+ bool has_sinks,
+ bool has_bias,
+ bool has_scap,
+ int32_t nsg,
+ int32_t nwg);
+
+ggml_metal_pipeline_t ggml_metal_library_get_pipeline_flash_attn_ext_vec_reduce(
+ ggml_metal_library_t lib,
+ const struct ggml_tensor * op,
+ int32_t dv,
+ int32_t nwg);
+
+//
+// device
+//
+
+struct ggml_metal_device_props {
+ char name[128];
+
+ size_t max_buffer_size;
+ size_t max_working_set_size;
+ size_t max_theadgroup_memory_size;
+
+ bool has_simdgroup_reduction;
+ bool has_simdgroup_mm;
+ bool has_unified_memory;
+ bool has_bfloat;
+ bool use_residency_sets;
+ bool use_shared_buffers;
+
+ bool supports_gpu_family_apple7;
+};
+
+ggml_metal_device_t ggml_metal_device_init(void);
+void ggml_metal_device_free(ggml_metal_device_t dev);
+
+// return a singleton that is automatically destroyed when the program exits
+ggml_metal_device_t ggml_metal_device_get(void);
+
+void * ggml_metal_device_get_obj (ggml_metal_device_t dev); // id<MTLDevice>
+void * ggml_metal_device_get_queue(ggml_metal_device_t dev); // id<MTLCommandQueue>
+
+ggml_metal_library_t ggml_metal_device_get_library(ggml_metal_device_t dev);
+
+void ggml_metal_device_get_memory(ggml_metal_device_t dev, size_t * free, size_t * total);
+bool ggml_metal_device_supports_op(ggml_metal_device_t dev, const struct ggml_tensor * op);
+
+const struct ggml_metal_device_props * ggml_metal_device_get_props(ggml_metal_device_t dev);
+
+//
+// device buffers
+//
+
+typedef struct ggml_metal_buffer * ggml_metal_buffer_t;
+
+ggml_metal_buffer_t ggml_metal_buffer_init(ggml_metal_device_t dev, size_t size, bool shared);
+ggml_metal_buffer_t ggml_metal_buffer_map (ggml_metal_device_t dev, void * ptr, size_t size, size_t max_tensor_size);
+
+void ggml_metal_buffer_free (ggml_metal_buffer_t buf);
+void * ggml_metal_buffer_get_base (ggml_metal_buffer_t buf);
+bool ggml_metal_buffer_is_shared(ggml_metal_buffer_t buf);
+
+void ggml_metal_buffer_memset_tensor(ggml_metal_buffer_t buf, struct ggml_tensor * tensor, uint8_t value, size_t offset, size_t size);
+void ggml_metal_buffer_set_tensor (ggml_metal_buffer_t buf, struct ggml_tensor * tensor, const void * data, size_t offset, size_t size);
+void ggml_metal_buffer_get_tensor (ggml_metal_buffer_t buf, const struct ggml_tensor * tensor, void * data, size_t offset, size_t size);
+void ggml_metal_buffer_clear (ggml_metal_buffer_t buf, uint8_t value);
+
+// finds the Metal buffer that contains the tensor data on the GPU device
+// the assumption is that there is 1-to-1 mapping between the host and device memory buffers, so we can find the
+// Metal buffer based on the host memory pointer
+//
+struct ggml_metal_buffer_id ggml_metal_buffer_get_id(ggml_metal_buffer_t buf, const struct ggml_tensor * t);
+
+#ifdef __cplusplus
+}
+#endif
--- /dev/null
+#import "ggml-metal-device.h"
+
+#import "ggml-impl.h"
+#import "ggml-threading.h"
+
+#include <Foundation/Foundation.h>
+
+#include <Metal/Metal.h>
+
+#ifndef TARGET_OS_VISION
+#define TARGET_OS_VISION 0
+#endif
+
+// create residency sets only on macOS >= 15.0
+#if !TARGET_CPU_X86_64 && TARGET_OS_OSX && __MAC_OS_X_VERSION_MAX_ALLOWED >= 150000 || \
+ TARGET_OS_IOS && __IPHONE_OS_VERSION_MAX_ALLOWED >= 180000 || \
+ TARGET_OS_TV && __TV_OS_VERSION_MAX_ALLOWED >= 180000 || \
+ TARGET_OS_VISION && __VISION_OS_VERSION_MAX_ALLOWED >= 200000
+#define GGML_METAL_HAS_RESIDENCY_SETS 1
+#endif
+
+// overload of MTLGPUFamilyMetal3 (not available in some environments)
+static const NSInteger MTLGPUFamilyMetal3_GGML = 5001;
+
+#if !GGML_METAL_EMBED_LIBRARY
+// Here to assist with NSBundle Path Hack
+@interface GGMLMetalClass : NSObject
+@end
+@implementation GGMLMetalClass
+@end
+#endif
+
+//
+// MTLFunctionConstantValues wrapper
+//
+
+struct ggml_metal_cv {
+ MTLFunctionConstantValues * obj;
+};
+
+ggml_metal_cv_t ggml_metal_cv_init(void) {
+ ggml_metal_cv_t res = calloc(1, sizeof(struct ggml_metal_cv));
+
+ res->obj = [[MTLFunctionConstantValues alloc] init];
+
+ return res;
+}
+
+void ggml_metal_cv_free(ggml_metal_cv_t cv) {
+ [cv->obj release];
+ free(cv);
+}
+
+void ggml_metal_cv_set_int32(ggml_metal_cv_t cv, int32_t value, int32_t idx) {
+ [cv->obj setConstantValue:&value type:MTLDataTypeInt atIndex:idx];
+}
+
+void ggml_metal_cv_set_bool(ggml_metal_cv_t cv, bool value, int32_t idx) {
+ [cv->obj setConstantValue:&value type:MTLDataTypeBool atIndex:idx];
+}
+
+//
+// MTLComputePipelineState wrapper
+//
+
+struct ggml_metal_pipeline {
+ id<MTLComputePipelineState> obj;
+
+ // suggested dispatch sizes
+ int nsg;
+
+ int nr0;
+ int nr1;
+
+ size_t smem;
+};
+
+ggml_metal_pipeline_t ggml_metal_pipeline_init(void) {
+ ggml_metal_pipeline_t res = calloc(1, sizeof(struct ggml_metal_pipeline));
+
+ *res = (struct ggml_metal_pipeline) {
+ /*.obj =*/ nil,
+ /*.nsg =*/ 0,
+ /*.nr0 =*/ 0,
+ /*.nr1 =*/ 0,
+ /*.smem =*/ 0,
+ };
+
+ return res;
+}
+
+void ggml_metal_pipeline_free(ggml_metal_pipeline_t pipeline) {
+ [pipeline->obj release];
+
+ free(pipeline);
+}
+
+void ggml_metal_pipeline_set_nsg(ggml_metal_pipeline_t pipeline, int nsg) {
+ pipeline->nsg = nsg;
+}
+
+int ggml_metal_pipeline_get_nsg(ggml_metal_pipeline_t pipeline) {
+ return pipeline->nsg;
+}
+
+void ggml_metal_pipeline_set_nr0(ggml_metal_pipeline_t pipeline, int nr0) {
+ pipeline->nr0 = nr0;
+}
+
+int ggml_metal_pipeline_get_nr0(ggml_metal_pipeline_t pipeline) {
+ return pipeline->nr0;
+}
+
+void ggml_metal_pipeline_set_nr1(ggml_metal_pipeline_t pipeline, int nr1) {
+ pipeline->nr1 = nr1;
+}
+
+int ggml_metal_pipeline_get_nr1(ggml_metal_pipeline_t pipeline) {
+ return pipeline->nr1;
+}
+
+void ggml_metal_pipeline_set_smem(ggml_metal_pipeline_t pipeline, size_t smem) {
+ pipeline->smem = smem;
+}
+
+size_t ggml_metal_pipeline_get_smem(ggml_metal_pipeline_t pipeline) {
+ return pipeline->smem;
+}
+
+int ggml_metal_pipeline_max_theads_per_threadgroup(ggml_metal_pipeline_t pipeline) {
+ return pipeline->obj.maxTotalThreadsPerThreadgroup;
+}
+
+struct ggml_metal_library {
+ id<MTLLibrary> obj;
+ id<MTLDevice> device;
+
+ ggml_metal_pipelines_t pipelines; // cache of compiled pipelines
+};
+
+ggml_metal_library_t ggml_metal_library_init(ggml_metal_device_t dev) {
+ id<MTLLibrary> library = nil;
+ id<MTLDevice> device = ggml_metal_device_get_obj(dev);
+
+ // load library
+ //
+ // - first check if the library is embedded
+ // - then check if the library is in the bundle
+ // - if not found, load the source and compile it
+ // - if that fails, return NULL
+ //
+ // TODO: move to a function
+ {
+ const int64_t t_start = ggml_time_us();
+
+ NSError * error = nil;
+ NSString * src = nil;
+
+#if GGML_METAL_EMBED_LIBRARY
+ GGML_LOG_INFO("%s: using embedded metal library\n", __func__);
+
+ extern const char ggml_metallib_start[];
+ extern const char ggml_metallib_end[];
+
+ src = [[NSString alloc] initWithBytes:ggml_metallib_start length:(ggml_metallib_end-ggml_metallib_start) encoding:NSUTF8StringEncoding];
+#else
+
+#ifdef SWIFT_PACKAGE
+ NSBundle * bundle = SWIFTPM_MODULE_BUNDLE;
+#else
+ NSBundle * bundle = [NSBundle bundleForClass:[GGMLMetalClass class]];
+#endif
+
+ NSString * path_lib = [bundle pathForResource:@"default" ofType:@"metallib"];
+ if (path_lib == nil) {
+ // Try to find the resource in the directory where the current binary located.
+ NSString * bin_cur = [[NSProcessInfo processInfo] arguments][0];
+ NSString * bin_dir = [bin_cur stringByDeletingLastPathComponent];
+
+ NSString * path_lib_default = [NSString pathWithComponents:@[bin_dir, @"default.metallib"]];
+ if ([[NSFileManager defaultManager] isReadableFileAtPath:path_lib_default]) {
+ GGML_LOG_INFO("%s: found '%s'\n", __func__, [path_lib_default UTF8String]);
+
+ NSDictionary * atts = [[NSFileManager defaultManager] attributesOfItemAtPath:path_lib_default error:&error];
+ if (atts && atts[NSFileType] == NSFileTypeSymbolicLink) {
+ // Optionally, if this is a symlink, try to resolve it.
+ path_lib_default = [[NSFileManager defaultManager] destinationOfSymbolicLinkAtPath:path_lib_default error:&error];
+ if (path_lib_default && [path_lib_default length] > 0 && ![[path_lib_default substringToIndex:1] isEqualToString:@"/"]) {
+ // It is a relative path, adding the binary directory as directory prefix.
+ path_lib_default = [NSString pathWithComponents:@[bin_dir, path_lib_default]];
+ }
+ if (!path_lib_default || ![[NSFileManager defaultManager] isReadableFileAtPath:path_lib_default]) {
+ // Link to the resource could not be resolved.
+ path_lib_default = nil;
+ } else {
+ GGML_LOG_INFO("%s: symlink resolved '%s'\n", __func__, [path_lib_default UTF8String]);
+ }
+ }
+ } else {
+ // The resource couldn't be found in the binary's directory.
+ path_lib_default = nil;
+ }
+
+ path_lib = path_lib_default;
+ }
+
+ if (path_lib != nil) {
+ // pre-compiled library found
+ NSURL * libURL = [NSURL fileURLWithPath:path_lib];
+ GGML_LOG_INFO("%s: loading '%s'\n", __func__, [path_lib UTF8String]);
+
+ library = [device newLibraryWithURL:libURL error:&error];
+ if (error) {
+ GGML_LOG_ERROR("%s: error: %s\n", __func__, [[error description] UTF8String]);
+ return nil;
+ }
+ } else {
+ GGML_LOG_INFO("%s: default.metallib not found, loading from source\n", __func__);
+
+ NSString * path_source;
+ NSString * path_resource = [[NSProcessInfo processInfo].environment objectForKey:@"GGML_METAL_PATH_RESOURCES"];
+
+ GGML_LOG_INFO("%s: GGML_METAL_PATH_RESOURCES = %s\n", __func__, path_resource ? [path_resource UTF8String] : "nil");
+
+ if (path_resource) {
+ path_source = [path_resource stringByAppendingPathComponent:@"ggml-metal.metal"];
+ } else {
+ path_source = [bundle pathForResource:@"ggml-metal" ofType:@"metal"];
+ }
+
+ if (path_source == nil) {
+ GGML_LOG_WARN("%s: error: could not use bundle path to find ggml-metal.metal, falling back to trying cwd\n", __func__);
+ path_source = @"ggml-metal.metal";
+ }
+
+ GGML_LOG_INFO("%s: loading '%s'\n", __func__, [path_source UTF8String]);
+
+ src = [NSString stringWithContentsOfFile:path_source encoding:NSUTF8StringEncoding error:&error];
+ if (error) {
+ GGML_LOG_ERROR("%s: error: %s\n", __func__, [[error description] UTF8String]);
+ return nil;
+ }
+ }
+#endif
+
+ if (!library) {
+ @autoreleasepool {
+ // dictionary of preprocessor macros
+ NSMutableDictionary * prep = [NSMutableDictionary dictionary];
+
+ if (ggml_metal_device_get_props(dev)->has_bfloat) {
+ [prep setObject:@"1" forKey:@"GGML_METAL_HAS_BF16"];
+ }
+
+#if GGML_METAL_EMBED_LIBRARY
+ [prep setObject:@"1" forKey:@"GGML_METAL_EMBED_LIBRARY"];
+#endif
+
+ MTLCompileOptions * options = [MTLCompileOptions new];
+ options.preprocessorMacros = prep;
+
+ //[options setFastMathEnabled:false];
+
+ library = [device newLibraryWithSource:src options:options error:&error];
+ if (error) {
+ GGML_LOG_ERROR("%s: error: %s\n", __func__, [[error description] UTF8String]);
+ return nil;
+ }
+
+#if !__has_feature(objc_arc)
+ [options release];
+#endif
+ }
+ }
+
+#if GGML_METAL_EMBED_LIBRARY
+ [src release];
+#endif // GGML_METAL_EMBED_LIBRARY
+
+ GGML_LOG_INFO("%s: loaded in %.3f sec\n", __func__, (ggml_time_us() - t_start) / 1e6);
+ }
+
+ ggml_metal_library_t res = calloc(1, sizeof(struct ggml_metal_library));
+
+ res->obj = library;
+ res->device = device;
+ res->pipelines = ggml_metal_pipelines_init();
+
+ return res;
+}
+
+void ggml_metal_library_free(ggml_metal_library_t lib) {
+ if (!lib) {
+ return;
+ }
+
+ if (lib->obj) {
+ [lib->obj release];
+ }
+
+ ggml_metal_pipelines_free(lib->pipelines);
+
+ free(lib);
+}
+
+ggml_metal_pipeline_t ggml_metal_library_get_pipeline(ggml_metal_library_t lib, const char * name) {
+ return ggml_metal_pipelines_get(lib->pipelines, name);
+}
+
+ggml_metal_pipeline_t ggml_metal_library_compile_pipeline(ggml_metal_library_t lib, const char * base, const char * name, ggml_metal_cv_t cv) {
+ // note: the pipelines are cached in the library per device, so they are shared across all metal contexts
+ ggml_critical_section_start();
+
+ ggml_metal_pipeline_t res = ggml_metal_library_get_pipeline(lib, name);
+ if (res) {
+ ggml_critical_section_end();
+
+ return res;
+ }
+
+ res = ggml_metal_pipeline_init();
+
+ @autoreleasepool {
+ NSError * error = nil;
+
+ NSString * base_func = [NSString stringWithUTF8String:base];
+
+ GGML_LOG_DEBUG("%s: compiling pipeline: base = '%s', name = '%s'\n", __func__, base, name);
+
+ id<MTLFunction> mtl_function = [lib->obj newFunctionWithName:base_func constantValues:(cv ? cv->obj : nil) error:&error];
+ if (!mtl_function) {
+ ggml_critical_section_end();
+
+ GGML_LOG_ERROR("%s: error: failed to compile pipeline: base = '%s', name = '%s'\n", __func__, base, name);
+ GGML_LOG_ERROR("%s: error: %s\n", __func__, [[error description] UTF8String]);
+
+ return nil;
+ }
+
+ res->obj = [lib->device newComputePipelineStateWithFunction:mtl_function error:&error];
+
+ ggml_metal_pipelines_add(lib->pipelines, name, res);
+
+ [mtl_function release];
+
+ GGML_LOG_DEBUG("%s: loaded %-40s %16p | th_max = %4d | th_width = %4d\n", __func__, name, (void *) res->obj,
+ (int) res->obj.maxTotalThreadsPerThreadgroup,
+ (int) res->obj.threadExecutionWidth);
+ }
+
+ ggml_critical_section_end();
+
+ return res;
+}
+
+//
+// MTLComputeCommandEncoder wrapper
+//
+
+struct ggml_metal_encoder {
+ id<MTLComputeCommandEncoder> obj;
+};
+
+ggml_metal_encoder_t ggml_metal_encoder_init(ggml_metal_cmd_buf_t cmd_buf_raw, bool concurrent) {
+ ggml_metal_encoder_t res = calloc(1, sizeof(struct ggml_metal_encoder));
+
+ id<MTLCommandBuffer> cmd_buf = (id<MTLCommandBuffer>) cmd_buf_raw;
+
+ if (concurrent) {
+ res->obj = [cmd_buf computeCommandEncoderWithDispatchType: MTLDispatchTypeConcurrent];
+ } else {
+ res->obj = [cmd_buf computeCommandEncoder];
+ }
+
+ [res->obj retain];
+
+ return res;
+}
+
+void ggml_metal_encoder_free(ggml_metal_encoder_t encoder) {
+ [encoder->obj release];
+ free(encoder);
+}
+
+void ggml_metal_encoder_debug_group_push(ggml_metal_encoder_t encoder, const char * name) {
+ [encoder->obj pushDebugGroup:[NSString stringWithCString:name encoding:NSUTF8StringEncoding]];
+}
+
+void ggml_metal_encoder_debug_group_pop (ggml_metal_encoder_t encoder) {
+ [encoder->obj popDebugGroup];
+}
+
+void ggml_metal_encoder_set_pipeline(ggml_metal_encoder_t encoder, ggml_metal_pipeline_t pipeline) {
+ [encoder->obj setComputePipelineState:pipeline->obj];
+}
+
+void ggml_metal_encoder_set_bytes(ggml_metal_encoder_t encoder, void * data, size_t size, int idx) {
+ [encoder->obj setBytes:data length:size atIndex:idx];
+}
+
+void ggml_metal_encoder_set_buffer(ggml_metal_encoder_t encoder, struct ggml_metal_buffer_id buffer, int idx) {
+ [encoder->obj setBuffer:buffer.metal offset:buffer.offs atIndex:idx];
+}
+
+void ggml_metal_encoder_set_threadgroup_memory_size(ggml_metal_encoder_t encoder, size_t size, int idx) {
+ [encoder->obj setThreadgroupMemoryLength:size atIndex:idx];
+}
+
+void ggml_metal_encoder_dispatch_threadgroups(ggml_metal_encoder_t encoder, int tg0, int tg1, int tg2, int tptg0, int tptg1, int tptg2) {
+ [encoder->obj dispatchThreadgroups:MTLSizeMake(tg0, tg1, tg2) threadsPerThreadgroup:MTLSizeMake(tptg0, tptg1, tptg2)];
+}
+
+void ggml_metal_encoder_memory_barrier(ggml_metal_encoder_t encoder) {
+ [encoder->obj memoryBarrierWithScope:MTLBarrierScopeBuffers];
+}
+
+void ggml_metal_encoder_end_encoding(ggml_metal_encoder_t encoder) {
+ [encoder->obj endEncoding];
+}
+
+struct ggml_metal_device {
+ id<MTLDevice> mtl_device;
+
+ // a single global queue shared by all Metal backends
+ // technically not needed for devices with unified memory, but enables discrete GPUs support
+ // ref: https://github.com/ggml-org/llama.cpp/pull/15906
+ id<MTLCommandQueue> mtl_queue;
+
+ ggml_metal_library_t library;
+
+ struct ggml_metal_device_props props;
+};
+
+ggml_metal_device_t ggml_metal_device_init(void) {
+ ggml_metal_device_t dev = calloc(1, sizeof(struct ggml_metal_device));
+
+ assert(dev != NULL);
+
+ if (dev->mtl_device == nil) {
+ dev->mtl_device = MTLCreateSystemDefaultDevice();
+
+ if (dev->mtl_device) {
+ dev->mtl_queue = [dev->mtl_device newCommandQueue];
+ if (dev->mtl_queue == nil) {
+ GGML_LOG_ERROR("%s: error: failed to create command queue\n", __func__);
+ }
+
+ dev->props.has_simdgroup_reduction = [dev->mtl_device supportsFamily:MTLGPUFamilyApple7];
+ dev->props.has_simdgroup_reduction |= [dev->mtl_device supportsFamily:MTLGPUFamilyMetal3_GGML];
+
+ dev->props.has_simdgroup_mm = [dev->mtl_device supportsFamily:MTLGPUFamilyApple7];
+ dev->props.has_unified_memory = dev->mtl_device.hasUnifiedMemory;
+
+ dev->props.has_bfloat = [dev->mtl_device supportsFamily:MTLGPUFamilyMetal3_GGML];
+ dev->props.has_bfloat |= [dev->mtl_device supportsFamily:MTLGPUFamilyApple6];
+
+ dev->props.use_residency_sets = true;
+#if defined(GGML_METAL_HAS_RESIDENCY_SETS)
+ dev->props.use_residency_sets = getenv("GGML_METAL_NO_RESIDENCY") == nil;
+#endif
+
+ dev->props.use_shared_buffers = dev->props.has_unified_memory;
+
+ if (getenv("GGML_METAL_SHARED_BUFFERS_DISABLE") != NULL) {
+ dev->props.use_shared_buffers = false;
+ }
+
+ dev->props.supports_gpu_family_apple7 = [dev->mtl_device supportsFamily:MTLGPUFamilyApple7];
+
+ dev->props.max_buffer_size = dev->mtl_device.maxBufferLength;
+ dev->props.max_working_set_size = dev->mtl_device.recommendedMaxWorkingSetSize;
+ dev->props.max_theadgroup_memory_size = dev->mtl_device.maxThreadgroupMemoryLength;
+
+ strncpy(dev->props.name, [[dev->mtl_device name] UTF8String], sizeof(dev->props.name) - 1);
+
+ dev->library = ggml_metal_library_init(dev);
+ if (!dev->library) {
+ GGML_LOG_ERROR("%s: error: failed to create library\n", __func__);
+ }
+
+ // --------------------------------------------------
+
+ // print MTL GPU family:
+ GGML_LOG_INFO("%s: GPU name: %s\n", __func__, dev->props.name);
+
+ // determine max supported GPU family
+ // https://developer.apple.com/metal/Metal-Shading-Language-Specification.pdf
+ // https://developer.apple.com/metal/Metal-Feature-Set-Tables.pdf
+ {
+ for (int i = MTLGPUFamilyApple1 + 20; i >= MTLGPUFamilyApple1; --i) {
+ if ([dev->mtl_device supportsFamily:i]) {
+ GGML_LOG_INFO("%s: GPU family: MTLGPUFamilyApple%d (%d)\n", __func__, i - (int) MTLGPUFamilyApple1 + 1, i);
+ break;
+ }
+ }
+
+ for (int i = MTLGPUFamilyCommon1 + 5; i >= MTLGPUFamilyCommon1; --i) {
+ if ([dev->mtl_device supportsFamily:i]) {
+ GGML_LOG_INFO("%s: GPU family: MTLGPUFamilyCommon%d (%d)\n", __func__, i - (int) MTLGPUFamilyCommon1 + 1, i);
+ break;
+ }
+ }
+
+ for (int i = MTLGPUFamilyMetal3_GGML + 5; i >= MTLGPUFamilyMetal3_GGML; --i) {
+ if ([dev->mtl_device supportsFamily:i]) {
+ GGML_LOG_INFO("%s: GPU family: MTLGPUFamilyMetal%d (%d)\n", __func__, i - (int) MTLGPUFamilyMetal3_GGML + 3, i);
+ break;
+ }
+ }
+ }
+
+ GGML_LOG_INFO("%s: simdgroup reduction = %s\n", __func__, dev->props.has_simdgroup_reduction ? "true" : "false");
+ GGML_LOG_INFO("%s: simdgroup matrix mul. = %s\n", __func__, dev->props.has_simdgroup_mm ? "true" : "false");
+ GGML_LOG_INFO("%s: has unified memory = %s\n", __func__, dev->props.has_unified_memory ? "true" : "false");
+ GGML_LOG_INFO("%s: has bfloat = %s\n", __func__, dev->props.has_bfloat ? "true" : "false");
+ GGML_LOG_INFO("%s: use residency sets = %s\n", __func__, dev->props.use_residency_sets ? "true" : "false");
+ GGML_LOG_INFO("%s: use shared buffers = %s\n", __func__, dev->props.use_shared_buffers ? "true" : "false");
+
+#if TARGET_OS_OSX || (TARGET_OS_IOS && __clang_major__ >= 15)
+ if (@available(macOS 10.12, iOS 16.0, *)) {
+ GGML_LOG_INFO("%s: recommendedMaxWorkingSetSize = %8.2f MB\n", __func__, dev->props.max_working_set_size / 1e6);
+ }
+#endif
+ }
+ }
+
+ return dev;
+}
+
+void ggml_metal_device_free(ggml_metal_device_t dev) {
+ assert(dev != NULL);
+
+ ggml_metal_library_free(dev->library);
+ dev->library = NULL;
+
+ if (dev->mtl_queue) {
+ [dev->mtl_queue release];
+ dev->mtl_queue = nil;
+ }
+
+ if (dev->mtl_device) {
+ [dev->mtl_device release];
+ dev->mtl_device = nil;
+ }
+
+ free(dev);
+}
+
+void * ggml_metal_device_get_obj(ggml_metal_device_t dev) {
+ return dev->mtl_device;
+}
+
+void * ggml_metal_device_get_queue(ggml_metal_device_t dev) {
+ return dev->mtl_queue;
+}
+
+ggml_metal_library_t ggml_metal_device_get_library(ggml_metal_device_t dev) {
+ return dev->library;
+}
+
+void ggml_metal_device_get_memory(ggml_metal_device_t dev, size_t * free, size_t * total) {
+ if (@available(macOS 10.12, iOS 16.0, *)) {
+ *total = dev->mtl_device.recommendedMaxWorkingSetSize;
+ *free = *total - dev->mtl_device.currentAllocatedSize;
+ } else {
+ *free = 0;
+ *total = 0;
+ }
+}
+
+bool ggml_metal_device_supports_op(ggml_metal_device_t dev, const struct ggml_tensor * op) {
+ const bool has_simdgroup_mm = dev->props.has_simdgroup_mm;
+ const bool has_simdgroup_reduction = dev->props.has_simdgroup_reduction;
+ const bool has_bfloat = dev->props.has_bfloat;
+
+ if (!has_bfloat) {
+ if (op->type == GGML_TYPE_BF16) {
+ return false;
+ }
+
+ for (size_t i = 0, n = 3; i < n; ++i) {
+ if (op->src[i] != NULL && op->src[i]->type == GGML_TYPE_BF16) {
+ return false;
+ }
+ }
+ }
+
+ switch (op->op) {
+ case GGML_OP_UNARY:
+ switch (ggml_get_unary_op(op)) {
+ case GGML_UNARY_OP_TANH:
+ case GGML_UNARY_OP_RELU:
+ case GGML_UNARY_OP_SIGMOID:
+ case GGML_UNARY_OP_GELU:
+ case GGML_UNARY_OP_GELU_ERF:
+ case GGML_UNARY_OP_GELU_QUICK:
+ case GGML_UNARY_OP_SILU:
+ case GGML_UNARY_OP_ELU:
+ case GGML_UNARY_OP_NEG:
+ case GGML_UNARY_OP_ABS:
+ case GGML_UNARY_OP_SGN:
+ case GGML_UNARY_OP_STEP:
+ case GGML_UNARY_OP_HARDSWISH:
+ case GGML_UNARY_OP_HARDSIGMOID:
+ case GGML_UNARY_OP_EXP:
+ return ggml_is_contiguous(op->src[0]) && op->src[0]->type == GGML_TYPE_F32;
+ default:
+ return false;
+ }
+ case GGML_OP_GLU:
+ switch (ggml_get_glu_op(op)) {
+ case GGML_GLU_OP_REGLU:
+ case GGML_GLU_OP_GEGLU:
+ case GGML_GLU_OP_SWIGLU:
+ case GGML_GLU_OP_SWIGLU_OAI:
+ case GGML_GLU_OP_GEGLU_ERF:
+ case GGML_GLU_OP_GEGLU_QUICK:
+ return ggml_is_contiguous_1(op->src[0]) && op->src[0]->type == GGML_TYPE_F32;
+ default:
+ return false;
+ }
+ case GGML_OP_NONE:
+ case GGML_OP_RESHAPE:
+ case GGML_OP_VIEW:
+ case GGML_OP_TRANSPOSE:
+ case GGML_OP_PERMUTE:
+ case GGML_OP_CONCAT:
+ return true;
+ case GGML_OP_ADD:
+ case GGML_OP_SUB:
+ case GGML_OP_MUL:
+ case GGML_OP_DIV:
+ case GGML_OP_ADD_ID:
+ return op->src[0]->type == GGML_TYPE_F32;
+ case GGML_OP_ACC:
+ case GGML_OP_REPEAT:
+ case GGML_OP_SCALE:
+ case GGML_OP_CONV_TRANSPOSE_1D:
+ return true;
+ case GGML_OP_CLAMP:
+ return op->src[0]->type == GGML_TYPE_F32;
+ case GGML_OP_SQR:
+ case GGML_OP_SQRT:
+ case GGML_OP_SIN:
+ case GGML_OP_COS:
+ case GGML_OP_LOG:
+ return ggml_is_contiguous(op->src[0]) && op->src[0]->type == GGML_TYPE_F32;
+ case GGML_OP_SUM_ROWS:
+ case GGML_OP_MEAN:
+ case GGML_OP_SOFT_MAX:
+ case GGML_OP_GROUP_NORM:
+ return has_simdgroup_reduction && ggml_is_contiguous_rows(op->src[0]);
+ case GGML_OP_RMS_NORM:
+ case GGML_OP_L2_NORM:
+ return has_simdgroup_reduction && (op->ne[0] % 4 == 0 && ggml_is_contiguous_1(op->src[0]));
+ case GGML_OP_ARGMAX:
+ return has_simdgroup_reduction;
+ case GGML_OP_NORM:
+ return has_simdgroup_reduction && (op->ne[0] % 4 == 0 && ggml_is_contiguous_1(op->src[0]));
+ case GGML_OP_ROPE:
+ return true;
+ case GGML_OP_IM2COL:
+ return ggml_is_contiguous(op->src[1]) && op->src[1]->type == GGML_TYPE_F32 && (op->type == GGML_TYPE_F16 || op->type == GGML_TYPE_F32);
+ case GGML_OP_POOL_1D:
+ return false;
+ case GGML_OP_UPSCALE:
+ return op->src[0]->type == GGML_TYPE_F32 && op->op_params[0] == GGML_SCALE_MODE_NEAREST;
+ case GGML_OP_POOL_2D:
+ return op->src[0]->type == GGML_TYPE_F32;
+ case GGML_OP_PAD:
+ return (ggml_get_op_params_i32(op, 0) == 0) && (ggml_get_op_params_i32(op, 2) == 0) &&
+ (ggml_get_op_params_i32(op, 4) == 0) && (ggml_get_op_params_i32(op, 6) == 0);
+ case GGML_OP_PAD_REFLECT_1D:
+ case GGML_OP_TIMESTEP_EMBEDDING:
+ case GGML_OP_ARGSORT:
+ case GGML_OP_LEAKY_RELU:
+ return op->src[0]->type == GGML_TYPE_F32;
+ case GGML_OP_ARANGE:
+ return true;
+ case GGML_OP_FLASH_ATTN_EXT:
+ // for new head sizes, add checks here
+ if (op->src[0]->ne[0] != 40 &&
+ op->src[0]->ne[0] != 64 &&
+ op->src[0]->ne[0] != 80 &&
+ op->src[0]->ne[0] != 96 &&
+ op->src[0]->ne[0] != 112 &&
+ op->src[0]->ne[0] != 128 &&
+ op->src[0]->ne[0] != 192 &&
+ op->src[0]->ne[0] != 256) {
+ return false;
+ }
+ if (op->src[0]->ne[0] == 576) {
+ // DeepSeek sizes
+ // TODO: disabled for now, until optmized
+ return false;
+ }
+ if (op->src[1]->type != op->src[2]->type) {
+ return false;
+ }
+ return has_simdgroup_mm; // TODO: over-restricted for vec-kernels
+ case GGML_OP_SSM_CONV:
+ case GGML_OP_SSM_SCAN:
+ return has_simdgroup_reduction;
+ case GGML_OP_RWKV_WKV6:
+ case GGML_OP_RWKV_WKV7:
+ return true;
+ case GGML_OP_MUL_MAT:
+ case GGML_OP_MUL_MAT_ID:
+ return has_simdgroup_reduction &&
+ (op->src[0]->type != GGML_TYPE_F32 || op->src[1]->type == GGML_TYPE_F32);
+ case GGML_OP_CPY:
+ case GGML_OP_DUP:
+ case GGML_OP_CONT:
+ {
+ switch (op->src[0]->type) {
+ case GGML_TYPE_F32:
+ switch (op->type) {
+ case GGML_TYPE_F32:
+ case GGML_TYPE_F16:
+ case GGML_TYPE_BF16:
+ case GGML_TYPE_Q8_0:
+ case GGML_TYPE_Q4_0:
+ case GGML_TYPE_Q4_1:
+ case GGML_TYPE_Q5_0:
+ case GGML_TYPE_Q5_1:
+ case GGML_TYPE_IQ4_NL:
+ case GGML_TYPE_I32:
+ return true;
+ default:
+ return false;
+ }
+ case GGML_TYPE_F16:
+ switch (op->type) {
+ case GGML_TYPE_F32:
+ case GGML_TYPE_F16:
+ return true;
+ default:
+ return false;
+ }
+ case GGML_TYPE_BF16:
+ switch (op->type) {
+ case GGML_TYPE_F32:
+ case GGML_TYPE_BF16:
+ return true;
+ default:
+ return false;
+ }
+ case GGML_TYPE_Q4_0:
+ case GGML_TYPE_Q4_1:
+ case GGML_TYPE_Q5_0:
+ case GGML_TYPE_Q5_1:
+ case GGML_TYPE_Q8_0:
+ switch (op->type) {
+ case GGML_TYPE_F32:
+ case GGML_TYPE_F16:
+ return true;
+ default:
+ return false;
+ }
+ case GGML_TYPE_I32:
+ return op->type == GGML_TYPE_F32;
+ default:
+ return false;
+ };
+ }
+ case GGML_OP_GET_ROWS:
+ {
+ return op->ne[3] == 1;
+ }
+ case GGML_OP_SET_ROWS:
+ {
+ if (op->src[0]->type != GGML_TYPE_F32) {
+ return false;
+ }
+
+ switch (op->type) {
+ case GGML_TYPE_F32:
+ case GGML_TYPE_F16:
+ case GGML_TYPE_BF16:
+ case GGML_TYPE_Q8_0:
+ case GGML_TYPE_Q4_0:
+ case GGML_TYPE_Q4_1:
+ case GGML_TYPE_Q5_0:
+ case GGML_TYPE_Q5_1:
+ case GGML_TYPE_IQ4_NL:
+ return true;
+ default:
+ return false;
+ };
+ }
+ default:
+ return false;
+ }
+}
+
+const struct ggml_metal_device_props * ggml_metal_device_get_props(ggml_metal_device_t dev) {
+ return &dev->props;
+}
+
+//
+// device buffers
+//
+
+// max memory buffers that can be mapped to the device
+#define GGML_METAL_MAX_BUFFERS 64
+
+struct ggml_metal_buffer_wrapper {
+ void * data;
+ size_t size;
+
+ id<MTLBuffer> metal;
+};
+
+struct ggml_metal_buffer {
+ void * all_data; // TODO: https://github.com/ggml-org/llama.cpp/pull/15985
+ size_t all_size;
+
+ // if false, the Metal buffer data is allocated in private GPU memory and is not shared with the host
+ bool is_shared;
+
+ // multiple buffers are used only to avoid the maximum buffer size limitation when using mmap
+ int n_buffers;
+ struct ggml_metal_buffer_wrapper buffers[GGML_METAL_MAX_BUFFERS];
+
+ bool use_residency_sets;
+
+ // optional MTLResidencySet
+ // note: cannot use explicity "id<MTLResidencySet>" here because it is not available on certain OSes
+ id rset;
+
+ // pointers to global device objects
+ id<MTLDevice> device;
+ id<MTLCommandQueue> queue;
+};
+
+static void ggml_metal_log_allocated_size(id<MTLDevice> device, size_t size_aligned) {
+#ifndef GGML_METAL_NDEBUG
+#if TARGET_OS_OSX || (TARGET_OS_IOS && __clang_major__ >= 15)
+ if (@available(macOS 10.12, iOS 16.0, *)) {
+ GGML_LOG_DEBUG("%s: allocated buffer, size = %8.2f MiB, (%8.2f / %8.2f)\n",
+ __func__,
+ size_aligned / 1024.0 / 1024.0,
+ device.currentAllocatedSize / 1024.0 / 1024.0,
+ device.recommendedMaxWorkingSetSize / 1024.0 / 1024.0);
+
+ if (device.currentAllocatedSize > device.recommendedMaxWorkingSetSize) {
+ GGML_LOG_WARN("%s: warning: current allocated size is greater than the recommended max working set size\n", __func__);
+ }
+ } else {
+ GGML_LOG_INFO("%s: allocated buffer, size = %8.2f MiB, (%8.2f)\n",
+ __func__,
+ size_aligned / 1024.0 / 1024.0,
+ device.currentAllocatedSize / 1024.0 / 1024.0);
+ }
+#endif
+#endif
+ GGML_UNUSED(device);
+ GGML_UNUSED(size_aligned);
+}
+
+// rset init
+static bool ggml_metal_buffer_rset_init(ggml_metal_buffer_t buf) {
+ buf->rset = nil;
+
+ if (!buf->use_residency_sets) {
+ return true;
+ }
+
+#if defined(GGML_METAL_HAS_RESIDENCY_SETS)
+ if (@available(macOS 15.0, iOS 18.0, tvOS 18.0, visionOS 2.0, *)) {
+ MTLResidencySetDescriptor * desc = [[MTLResidencySetDescriptor alloc] init];
+ desc.label = @"ggml_metal";
+ desc.initialCapacity = buf->n_buffers;
+
+ NSError * error;
+ buf->rset = [buf->device newResidencySetWithDescriptor:desc error:&error];
+ if (error) {
+ GGML_LOG_ERROR("%s: error: %s\n", __func__, [[error description] UTF8String]);
+ [desc release];
+ return false;
+ }
+
+ [desc release];
+
+ for (int i = 0; i < buf->n_buffers; i++) {
+ [buf->rset addAllocation:buf->buffers[i].metal];
+ }
+
+ [buf->rset commit];
+ [buf->rset requestResidency];
+
+ return true;
+ }
+#endif
+
+ return true;
+}
+
+// rset free
+static void ggml_metal_buffer_rset_free(ggml_metal_buffer_t buf) {
+#if defined(GGML_METAL_HAS_RESIDENCY_SETS)
+ if (@available(macOS 15.0, iOS 18.0, tvOS 18.0, visionOS 2.0, *)) {
+ if (buf->rset) {
+ [buf->rset endResidency];
+ [buf->rset removeAllAllocations];
+ [buf->rset release];
+ }
+ }
+#else
+ GGML_UNUSED(buf);
+#endif
+}
+
+static void * ggml_metal_host_malloc(size_t n) {
+ void * data = NULL;
+
+#if TARGET_OS_OSX
+ kern_return_t err = vm_allocate((vm_map_t) mach_task_self(), (void *) &data, n, VM_FLAGS_ANYWHERE);
+ if (err != KERN_SUCCESS) {
+ GGML_LOG_ERROR("%s: error: vm_allocate failed\n", __func__);
+ return NULL;
+ }
+#else
+ const int result = posix_memalign((void **) &data, sysconf(_SC_PAGESIZE), n);
+ if (result != 0) {
+ GGML_LOG_ERROR("%s: error: posix_memalign failed\n", __func__);
+ return NULL;
+ }
+#endif
+
+ return data;
+}
+
+ggml_metal_buffer_t ggml_metal_buffer_init(ggml_metal_device_t dev, size_t size, bool shared) {
+ ggml_metal_buffer_t res = calloc(1, sizeof(struct ggml_metal_buffer));
+
+ const size_t size_page = sysconf(_SC_PAGESIZE);
+
+ size_t size_aligned = size;
+ if ((size_aligned % size_page) != 0) {
+ size_aligned += (size_page - (size_aligned % size_page));
+ }
+
+ const struct ggml_metal_device_props * props_dev = ggml_metal_device_get_props(dev);
+
+ shared = shared && props_dev->use_shared_buffers;
+
+ // allocate shared buffer if the device supports it and it is required by the buffer type
+ if (shared) {
+ res->all_data = ggml_metal_host_malloc(size_aligned);
+ res->is_shared = true;
+ } else {
+ // dummy, non-NULL value - we'll populate this after creating the Metal buffer below
+ res->all_data = (void *) 0x000000400ULL;
+ res->is_shared = false;
+ }
+ res->all_size = size_aligned;
+
+ res->device = ggml_metal_device_get_obj(dev);
+ res->queue = ggml_metal_device_get_queue(dev);
+
+ res->n_buffers = 1;
+
+ if (res->all_data != NULL) {
+ res->buffers[0].size = size;
+ res->buffers[0].metal = nil;
+
+ if (size_aligned > 0) {
+ if (props_dev->use_shared_buffers &&shared) {
+ res->buffers[0].metal = [res->device newBufferWithBytesNoCopy:res->all_data
+ length:size_aligned
+ options:MTLResourceStorageModeShared
+ deallocator:nil];
+ } else {
+ res->buffers[0].metal = [res->device newBufferWithLength:size_aligned options:MTLResourceStorageModePrivate];
+
+ res->all_data = (void *) (res->buffers[0].metal.gpuAddress);
+ }
+ }
+
+ res->buffers[0].data = res->all_data;
+ }
+
+ if (size_aligned > 0 && (res->all_data == NULL || res->buffers[0].metal == nil)) {
+ GGML_LOG_ERROR("%s: error: failed to allocate buffer, size = %8.2f MiB\n", __func__, size_aligned / 1024.0 / 1024.0);
+ free(res);
+ return NULL;
+ }
+
+ res->use_residency_sets = props_dev->use_residency_sets;
+
+ if (!ggml_metal_buffer_rset_init(res)) {
+ GGML_LOG_ERROR("%s: error: failed to initialize residency set\n", __func__);
+ free(res);
+ return NULL;
+ }
+
+ //ggml_metal_log_allocated_size(device, size_aligned);
+
+ return res;
+}
+
+ggml_metal_buffer_t ggml_metal_buffer_map(ggml_metal_device_t dev, void * ptr, size_t size, size_t max_tensor_size) {
+ ggml_metal_buffer_t res = calloc(1, sizeof(struct ggml_metal_buffer));
+
+ res->all_data = ptr;
+ res->all_size = size;
+
+ res->is_shared = true;
+
+ res->n_buffers = 0;
+
+ const size_t size_page = sysconf(_SC_PAGESIZE);
+
+ // page-align the data ptr
+ {
+ const uintptr_t offs = (uintptr_t) ptr % size_page;
+ ptr = (void *) ((char *) ptr - offs);
+ size += offs;
+ }
+
+ size_t size_aligned = size;
+ if ((size_aligned % size_page) != 0) {
+ size_aligned += (size_page - (size_aligned % size_page));
+ }
+
+ res->device = ggml_metal_device_get_obj(dev);
+ res->queue = ggml_metal_device_get_queue(dev);
+
+ const struct ggml_metal_device_props * props_dev = ggml_metal_device_get_props(dev);
+
+ // the buffer fits into the max buffer size allowed by the device
+ if (size_aligned <= props_dev->max_buffer_size) {
+ res->buffers[res->n_buffers].data = ptr;
+ res->buffers[res->n_buffers].size = size;
+ res->buffers[res->n_buffers].metal = nil;
+
+ if (size_aligned > 0) {
+ res->buffers[res->n_buffers].metal = [res->device newBufferWithBytesNoCopy:ptr length:size_aligned options:MTLResourceStorageModeShared deallocator:nil];
+
+ if (res->buffers[res->n_buffers].metal == nil) {
+ GGML_LOG_ERROR("%s: error: failed to allocate buffer, size = %8.2f MiB\n", __func__, size_aligned / 1024.0 / 1024.0);
+ free(res);
+ return NULL;
+ }
+ }
+
+ ggml_metal_log_allocated_size(res->device, size_aligned);
+
+ ++res->n_buffers;
+ } else {
+ // this overlap between the views will guarantee that the tensor with the maximum size will fully fit into
+ // one of the views
+ const size_t size_ovlp = ((max_tensor_size + size_page - 1) / size_page + 1) * size_page; // round-up 2 pages just in case
+ const size_t size_step = props_dev->max_buffer_size - size_ovlp;
+ const size_t size_view = props_dev->max_buffer_size;
+
+ for (size_t i = 0; i < size; i += size_step) {
+ const size_t size_step_aligned = (i + size_view <= size) ? size_view : (size_aligned - i);
+
+ res->buffers[res->n_buffers].data = (void *) ((uint8_t *) ptr + i);
+ res->buffers[res->n_buffers].size = size_step_aligned;
+ res->buffers[res->n_buffers].metal = nil;
+
+ if (size_step_aligned > 0) {
+ res->buffers[res->n_buffers].metal = [res->device newBufferWithBytesNoCopy:(void *) ((uint8_t *) ptr + i) length:size_step_aligned options:MTLResourceStorageModeShared deallocator:nil];
+
+ if (res->buffers[res->n_buffers].metal == nil) {
+ GGML_LOG_ERROR("%s: error: failed to allocate buffer, size = %8.2f MiB\n", __func__, size_step_aligned / 1024.0 / 1024.0);
+ free(res);
+ return NULL;
+ }
+ }
+
+ ggml_metal_log_allocated_size(res->device, size_step_aligned);
+
+ if (i + size_step < size) {
+ GGML_LOG_INFO("\n");
+ }
+
+ ++res->n_buffers;
+ }
+ }
+
+ res->use_residency_sets = props_dev->use_residency_sets;
+
+ if (!ggml_metal_buffer_rset_init(res)) {
+ GGML_LOG_ERROR("%s: error: failed to initialize residency set\n", __func__);
+ free(res);
+ return NULL;
+ }
+
+ return res;
+}
+
+void ggml_metal_buffer_free(ggml_metal_buffer_t buf) {
+ for (int i = 0; i < buf->n_buffers; i++) {
+ [buf->buffers[i].metal release];
+ }
+
+ ggml_metal_buffer_rset_free(buf);
+
+ if (buf->is_shared) {
+#if TARGET_OS_OSX
+ vm_deallocate((vm_map_t)mach_task_self(), (vm_address_t)buf->all_data, buf->all_size);
+#else
+ free(buf->all_data);
+#endif
+ }
+
+ free(buf);
+}
+
+void * ggml_metal_buffer_get_base(ggml_metal_buffer_t buf) {
+ return buf->all_data;
+}
+
+bool ggml_metal_buffer_is_shared(ggml_metal_buffer_t buf) {
+ return buf->is_shared;
+}
+
+void ggml_metal_buffer_memset_tensor(ggml_metal_buffer_t buf, struct ggml_tensor * tensor, uint8_t value, size_t offset, size_t size) {
+ if (buf->is_shared) {
+ memset((char *)tensor->data + offset, value, size);
+ return;
+ }
+
+ @autoreleasepool {
+ // dst
+ struct ggml_metal_buffer_id bid_dst = ggml_metal_buffer_get_id(buf, tensor);
+ bid_dst.offs += offset;
+
+ id<MTLCommandQueue> queue = buf->queue;
+ id<MTLCommandBuffer> cmd_buf = [queue commandBufferWithUnretainedReferences];
+
+ {
+ id<MTLBlitCommandEncoder> encoder = [cmd_buf blitCommandEncoder];
+
+ [encoder fillBuffer:bid_dst.metal
+ range:NSMakeRange(bid_dst.offs, bid_dst.offs + size)
+ value:value];
+
+ [encoder endEncoding];
+ }
+
+ [cmd_buf commit];
+ [cmd_buf waitUntilCompleted];
+ }
+}
+
+void ggml_metal_buffer_set_tensor(ggml_metal_buffer_t buf, struct ggml_tensor * tensor, const void * data, size_t offset, size_t size) {
+ if (buf->is_shared) {
+ memcpy((char *)tensor->data + offset, data, size);
+ return;
+ }
+
+ @autoreleasepool {
+ // src
+ void * data_ptr = (void *)(uintptr_t) data; // "const cast" the src data
+ id<MTLBuffer> buf_src = [buf->device newBufferWithBytesNoCopy:data_ptr
+ length:size
+ options:MTLResourceStorageModeShared
+ deallocator:nil];
+
+ // dst
+ struct ggml_metal_buffer_id bid_dst = ggml_metal_buffer_get_id(buf, tensor);
+ bid_dst.offs += offset;
+
+ // note: for experimentation purposes, here we use a semaphore to wait for the copy to complete
+ // this is alternative to waitUntilCompleted, which should be faster, but don't seem to make much difference
+ dispatch_semaphore_t completion_semaphore = dispatch_semaphore_create(0);
+
+ id<MTLCommandQueue> queue = buf->queue;
+ id<MTLCommandBuffer> cmd_buf = [queue commandBufferWithUnretainedReferences];
+
+ {
+ id<MTLBlitCommandEncoder> encoder = [cmd_buf blitCommandEncoder];
+
+ [encoder copyFromBuffer:buf_src
+ sourceOffset:0
+ toBuffer:bid_dst.metal
+ destinationOffset:bid_dst.offs
+ size:size];
+
+ [encoder endEncoding];
+ }
+
+ [cmd_buf addCompletedHandler:^(id<MTLCommandBuffer> cb) {
+ // TODO: can check for errors here
+ GGML_UNUSED(cb);
+
+ dispatch_semaphore_signal(completion_semaphore);
+ }];
+
+ [cmd_buf commit];
+
+ dispatch_semaphore_wait(completion_semaphore, DISPATCH_TIME_FOREVER);
+ dispatch_release(completion_semaphore);
+
+ //[cmd_buf waitUntilCompleted];
+ }
+}
+
+void ggml_metal_buffer_get_tensor(ggml_metal_buffer_t buf, const struct ggml_tensor * tensor, void * data, size_t offset, size_t size) {
+ if (buf->is_shared) {
+ memcpy(data, (const char *)tensor->data + offset, size);
+ return;
+ }
+
+ @autoreleasepool {
+ // src
+ struct ggml_metal_buffer_id bid_src = ggml_metal_buffer_get_id(buf, tensor);
+ bid_src.offs += offset;
+
+ // dst
+ id<MTLBuffer> buf_dst = [buf->device newBufferWithBytesNoCopy:data
+ length:size
+ options:MTLResourceStorageModeShared
+ deallocator:nil];
+
+ id<MTLCommandQueue> queue = buf->queue;
+ id<MTLCommandBuffer> cmd_buf = [queue commandBufferWithUnretainedReferences];
+
+ {
+ id<MTLBlitCommandEncoder> encoder = [cmd_buf blitCommandEncoder];
+
+ [encoder copyFromBuffer:bid_src.metal
+ sourceOffset:bid_src.offs
+ toBuffer:buf_dst
+ destinationOffset:0
+ size:size];
+
+ [encoder endEncoding];
+ }
+
+ [cmd_buf commit];
+ [cmd_buf waitUntilCompleted];
+ }
+}
+
+void ggml_metal_buffer_clear(ggml_metal_buffer_t buf, uint8_t value) {
+ if (buf->is_shared) {
+ memset(buf->all_data, value, buf->all_size);
+ return;
+ }
+
+ @autoreleasepool {
+ id<MTLCommandQueue> queue = buf->queue;
+ id<MTLCommandBuffer> cmd_buf = [queue commandBufferWithUnretainedReferences];
+
+ {
+ id<MTLBlitCommandEncoder> encoder = [cmd_buf blitCommandEncoder];
+
+ [encoder fillBuffer:buf->buffers[0].metal
+ range:NSMakeRange(0, buf->buffers[0].size)
+ value:value];
+
+ [encoder endEncoding];
+ }
+
+ [cmd_buf commit];
+ [cmd_buf waitUntilCompleted];
+ }
+}
+
+struct ggml_metal_buffer_id ggml_metal_buffer_get_id(ggml_metal_buffer_t buf, const struct ggml_tensor * t) {
+ struct ggml_metal_buffer_id res = { nil, 0 };
+
+ const int64_t tsize = ggml_nbytes(t);
+
+ // find the view that contains the tensor fully
+ for (int i = 0; i < buf->n_buffers; ++i) {
+ const int64_t ioffs = (int64_t) t->data - (int64_t) buf->buffers[i].data;
+
+ //GGML_LOG_INFO("ioffs = %10ld, tsize = %10ld, sum = %10ld, buf->buffers[%d].size = %10ld\n", ioffs, tsize, ioffs + tsize, i, buf->buffers[i].size);
+ if (ioffs >= 0 && ioffs + tsize <= (int64_t) buf->buffers[i].size) {
+ res.metal = buf->buffers[i].metal;
+ res.offs = (size_t) ioffs;
+
+ //GGML_LOG_INFO("%s: tensor '%16s', offs = %8ld\n", __func__, t->name, *offs);
+
+ return res;
+ }
+ }
+
+ GGML_LOG_ERROR("%s: error: tensor '%s' buffer is nil\n", __func__, t->name);
+
+ return res;
+}
uint64_t nb3;
} ggml_metal_kargs_repeat;
+typedef struct {
+ float scale;
+ float bias;
+} ggml_metal_kargs_scale;
+
+typedef struct {
+ float min;
+ float max;
+} ggml_metal_kargs_clamp;
+
typedef struct {
int64_t ne00;
int64_t ne01;
uint64_t nb00;
uint64_t nb01;
uint64_t nb02;
- int32_t n_groups;
+ int32_t ngrp;
float eps;
} ggml_metal_kargs_group_norm;
uint64_t nb01;
uint64_t nb02;
uint64_t nb03;
- int64_t ne10;
- int64_t ne11;
- int64_t ne12;
- int64_t ne13;
- uint64_t nb10;
- uint64_t nb11;
- uint64_t nb12;
- uint64_t nb13;
int64_t ne0;
int64_t ne1;
int64_t ne2;
int32_t n_head_log2;
} ggml_metal_kargs_soft_max;
-typedef struct {
- int64_t ne00;
- int64_t ne01;
- int n_past;
-} ggml_metal_kargs_diag_mask_inf;
-
typedef struct {
int64_t ne00;
int64_t ne01;
int64_t n_group;
int64_t n_seq_tokens;
int64_t n_seqs;
- int64_t s_off;
+ uint64_t s_off;
uint64_t nb01;
uint64_t nb02;
uint64_t nb03;
int64_t IW;
int64_t OH;
int64_t OW;
- int64_t parallel_elements;
+ int64_t np;
} ggml_metal_kargs_pool_2d;
+typedef struct {
+ int64_t ne00;
+ uint64_t nb01;
+} ggml_metal_kargs_argmax;
+
#endif // GGML_METAL_IMPL
--- /dev/null
+#include "ggml-metal-ops.h"
+
+#include "ggml.h"
+#include "ggml-impl.h"
+#include "ggml-backend-impl.h"
+
+#include "ggml-metal-impl.h"
+#include "ggml-metal-common.h"
+#include "ggml-metal-device.h"
+
+#include <cassert>
+#include <algorithm>
+
+static ggml_metal_buffer_id ggml_metal_get_buffer_id(const ggml_tensor * t) {
+ if (!t) {
+ return { nullptr, 0 };
+ }
+
+ ggml_backend_buffer_t buffer = t->view_src ? t->view_src->buffer : t->buffer;
+
+ ggml_metal_buffer_t ctx = (ggml_metal_buffer_t) buffer->context;
+
+ return ggml_metal_buffer_get_id(ctx, t);
+}
+
+struct ggml_metal_op {
+ ggml_metal_device_t dev;
+ ggml_metal_library_t lib;
+ ggml_metal_encoder_t enc;
+ ggml_mem_ranges_t mem_ranges;
+
+ ggml_cgraph * gf;
+
+ int idx_start;
+ int idx_end;
+
+ bool use_fusion;
+ bool use_concurrency;
+ bool use_capture;
+
+ int debug_graph;
+ int debug_fusion;
+};
+
+ggml_metal_op_t ggml_metal_op_init(
+ ggml_metal_device_t dev,
+ ggml_metal_cmd_buf_t cmd_buf,
+ ggml_cgraph * gf,
+ int idx_start,
+ int idx_end,
+ bool use_fusion,
+ bool use_concurrency,
+ bool use_capture,
+ int debug_graph,
+ int debug_fusion) {
+ ggml_metal_op_t res = new ggml_metal_op();
+
+ *res = {
+ /*.dev =*/ dev,
+ /*.lib =*/ ggml_metal_device_get_library(dev),
+ /*.enc =*/ ggml_metal_encoder_init(cmd_buf, use_concurrency),
+ /*.mem_ranges =*/ ggml_mem_ranges_init(debug_graph),
+ /*.gf =*/ gf,
+ /*.idx_start =*/ idx_start,
+ /*.idx_end =*/ idx_end,
+ /*.use_fusion =*/ use_fusion,
+ /*.use_concurrency =*/ use_concurrency,
+ /*.use_capture =*/ use_capture,
+ /*.debug_graph =*/ debug_graph,
+ /*.debug_fusion =*/ debug_fusion,
+ };
+
+ return res;
+}
+
+void ggml_metal_op_free(ggml_metal_op_t ctx) {
+ ggml_metal_encoder_end_encoding(ctx->enc);
+ ggml_metal_encoder_free(ctx->enc);
+ ggml_mem_ranges_free(ctx->mem_ranges);
+
+ delete ctx;
+}
+
+static bool ggml_metal_op_concurrency_reset(ggml_metal_op_t ctx) {
+ if (!ctx->mem_ranges) {
+ return true;
+ }
+
+ ggml_metal_encoder_memory_barrier(ctx->enc);
+
+ ggml_mem_ranges_reset(ctx->mem_ranges);
+
+ return true;
+}
+
+static bool ggml_metal_op_concurrency_check(ggml_metal_op_t ctx, const ggml_tensor * node) {
+ if (!ctx->mem_ranges) {
+ return false;
+ }
+
+ return ggml_mem_ranges_check(ctx->mem_ranges, node);
+}
+
+static bool ggml_metal_op_concurrency_add(ggml_metal_op_t ctx, const ggml_tensor * node) {
+ if (!ctx->mem_ranges) {
+ return true;
+ }
+
+ return ggml_mem_ranges_add(ctx->mem_ranges, node);
+}
+
+static int ggml_metal_op_encode_impl(ggml_metal_op_t ctx, int idx) {
+ struct ggml_cgraph * gf = ctx->gf;
+
+ struct ggml_tensor ** nodes = ggml_graph_nodes(gf) + idx;
+ struct ggml_tensor * node = nodes[0];
+
+ //GGML_LOG_INFO("%s: encoding node %3d, op = %8s\n", __func__, idx, ggml_op_name(node->op));
+
+ if (ggml_is_empty(node)) {
+ return 1;
+ }
+
+ switch (node->op) {
+ case GGML_OP_NONE:
+ case GGML_OP_RESHAPE:
+ case GGML_OP_VIEW:
+ case GGML_OP_TRANSPOSE:
+ case GGML_OP_PERMUTE:
+ {
+ // noop -> next node
+ } return 1;
+ default:
+ {
+ } break;
+ }
+
+ if (!ggml_metal_device_supports_op(ctx->dev, node)) {
+ GGML_LOG_ERROR("%s: error: unsupported op '%s'\n", __func__, ggml_op_desc(node));
+ GGML_ABORT("unsupported op");
+ }
+
+ int n_fuse = 1;
+
+ // check if the current node can run concurrently with other nodes before it
+ // the condition is that:
+ // - the current node cannot write to any previous src or dst ranges
+ // - the current node cannot read from any previous dst ranges
+ //
+ // if the condition is not satisfied, we put a memory barrier and clear all ranges
+ // otherwise, we add the new ranges to the encoding context and process the node concurrently
+ //
+ {
+ const bool is_concurrent = ggml_metal_op_concurrency_check(ctx, node);
+
+ if (!is_concurrent) {
+ ggml_metal_op_concurrency_reset(ctx);
+ }
+
+ if (ctx->debug_graph > 0) {
+ GGML_LOG_DEBUG("%s: node[%5d] - %-12s %s\n", __func__, idx, ggml_op_name(node->op), is_concurrent ? "(concurrent)" : "");
+ }
+ if (ctx->debug_graph > 1) {
+ GGML_TENSOR_LOCALS( int64_t, ne0, node->src[0], ne);
+ GGML_TENSOR_LOCALS(uint64_t, nb0, node->src[0], nb);
+ GGML_TENSOR_LOCALS( int64_t, ne1, node->src[1], ne);
+ GGML_TENSOR_LOCALS(uint64_t, nb1, node->src[1], nb);
+ GGML_TENSOR_LOCALS( int64_t, ne, node, ne);
+ GGML_TENSOR_LOCALS(uint64_t, nb, node, nb);
+
+ if (node->src[0]) {
+ GGML_LOG_DEBUG("%s: src0 - %4s [%5lld, %5lld, %5lld, %5lld] [%5lld, %5lld, %5lld, %5lld], %d, %s\n", __func__, ggml_type_name(node->src[0]->type), ne00, ne01, ne02, ne03, nb00, nb01, nb02, nb03,
+ ggml_is_contiguous(node->src[0]), node->src[0]->name);
+ }
+ if (node->src[1]) {
+ GGML_LOG_DEBUG("%s: src1 - %4s [%5lld, %5lld, %5lld, %5lld] [%5lld, %5lld, %5lld, %5lld], %d, %s\n", __func__, ggml_type_name(node->src[1]->type), ne10, ne11, ne12, ne13, nb10, nb11, nb12, nb13,
+ ggml_is_contiguous(node->src[1]), node->src[1]->name);
+ }
+ if (node) {
+ GGML_LOG_DEBUG("%s: node - %4s [%5lld, %5lld, %5lld, %5lld] [%5lld, %5lld, %5lld, %5lld], 1, %s\n", __func__, ggml_type_name(node->type), ne0, ne1, ne2, ne3, nb0, nb1, nb2, nb3,
+ node->name);
+ }
+ }
+ }
+
+ switch (node->op) {
+ case GGML_OP_CONCAT:
+ {
+ n_fuse = ggml_metal_op_concat(ctx, idx);
+ } break;
+ case GGML_OP_ADD:
+ case GGML_OP_SUB:
+ case GGML_OP_MUL:
+ case GGML_OP_DIV:
+ {
+ n_fuse = ggml_metal_op_bin(ctx, idx);
+ } break;
+ case GGML_OP_ADD_ID:
+ {
+ n_fuse = ggml_metal_op_add_id(ctx, idx);
+ } break;
+ case GGML_OP_REPEAT:
+ {
+ n_fuse = ggml_metal_op_repeat(ctx, idx);
+ } break;
+ case GGML_OP_ACC:
+ {
+ n_fuse = ggml_metal_op_acc(ctx, idx);
+ } break;
+ case GGML_OP_SCALE:
+ {
+ n_fuse = ggml_metal_op_scale(ctx, idx);
+ } break;
+ case GGML_OP_CLAMP:
+ {
+ n_fuse = ggml_metal_op_clamp(ctx, idx);
+ } break;
+ case GGML_OP_SQR:
+ case GGML_OP_SQRT:
+ case GGML_OP_SIN:
+ case GGML_OP_COS:
+ case GGML_OP_LOG:
+ case GGML_OP_UNARY:
+ {
+ n_fuse = ggml_metal_op_unary(ctx, idx);
+ } break;
+ case GGML_OP_GLU:
+ {
+ n_fuse = ggml_metal_op_glu(ctx, idx);
+ } break;
+ case GGML_OP_SUM_ROWS:
+ case GGML_OP_MEAN:
+ {
+ n_fuse = ggml_metal_op_sum_rows(ctx, idx);
+ } break;
+ case GGML_OP_SOFT_MAX:
+ {
+ n_fuse = ggml_metal_op_soft_max(ctx, idx);
+ } break;
+ case GGML_OP_SSM_CONV:
+ {
+ n_fuse = ggml_metal_op_ssm_conv(ctx, idx);
+ } break;
+ case GGML_OP_SSM_SCAN:
+ {
+ n_fuse = ggml_metal_op_ssm_scan(ctx, idx);
+ } break;
+ case GGML_OP_RWKV_WKV6:
+ case GGML_OP_RWKV_WKV7:
+ {
+ n_fuse = ggml_metal_op_rwkv(ctx, idx);
+ } break;
+ case GGML_OP_MUL_MAT:
+ {
+ n_fuse = ggml_metal_op_mul_mat(ctx, idx);
+ } break;
+ case GGML_OP_MUL_MAT_ID:
+ {
+ n_fuse = ggml_metal_op_mul_mat_id(ctx, idx);
+ } break;
+ case GGML_OP_GET_ROWS:
+ {
+ n_fuse = ggml_metal_op_get_rows(ctx, idx);
+ } break;
+ case GGML_OP_SET_ROWS:
+ {
+ n_fuse = ggml_metal_op_set_rows(ctx, idx);
+ } break;
+ case GGML_OP_RMS_NORM:
+ {
+ n_fuse = ggml_metal_op_rms_norm(ctx, idx);
+ } break;
+ case GGML_OP_L2_NORM:
+ {
+ n_fuse = ggml_metal_op_l2_norm(ctx, idx);
+ } break;
+ case GGML_OP_GROUP_NORM:
+ {
+ n_fuse = ggml_metal_op_group_norm(ctx, idx);
+ } break;
+ case GGML_OP_NORM:
+ {
+ n_fuse = ggml_metal_op_norm(ctx, idx);
+ } break;
+ case GGML_OP_ROPE:
+ {
+ n_fuse = ggml_metal_op_rope(ctx, idx);
+ } break;
+ case GGML_OP_IM2COL:
+ {
+ n_fuse = ggml_metal_op_im2col(ctx, idx);
+ } break;
+ case GGML_OP_CONV_TRANSPOSE_1D:
+ {
+ n_fuse = ggml_metal_op_conv_transpose_1d(ctx, idx);
+ } break;
+ case GGML_OP_UPSCALE:
+ {
+ n_fuse = ggml_metal_op_upscale(ctx, idx);
+ } break;
+ case GGML_OP_PAD:
+ {
+ n_fuse = ggml_metal_op_pad(ctx, idx);
+ } break;
+ case GGML_OP_PAD_REFLECT_1D:
+ {
+ n_fuse = ggml_metal_op_pad_reflect_1d(ctx, idx);
+ } break;
+ case GGML_OP_ARANGE:
+ {
+ n_fuse = ggml_metal_op_arange(ctx, idx);
+ } break;
+ case GGML_OP_TIMESTEP_EMBEDDING:
+ {
+ n_fuse = ggml_metal_op_timestep_embedding(ctx, idx);
+ } break;
+ case GGML_OP_ARGSORT:
+ {
+ n_fuse = ggml_metal_op_argsort(ctx, idx);
+ } break;
+ case GGML_OP_LEAKY_RELU:
+ {
+ n_fuse = ggml_metal_op_leaky_relu(ctx, idx);
+ } break;
+ case GGML_OP_FLASH_ATTN_EXT:
+ {
+ n_fuse = ggml_metal_op_flash_attn_ext(ctx, idx);
+ } break;
+ case GGML_OP_DUP:
+ case GGML_OP_CPY:
+ case GGML_OP_CONT:
+ {
+ n_fuse = ggml_metal_op_cpy(ctx, idx);
+ } break;
+ case GGML_OP_POOL_2D:
+ {
+ n_fuse = ggml_metal_op_pool_2d(ctx, idx);
+ } break;
+ case GGML_OP_ARGMAX:
+ {
+ n_fuse = ggml_metal_op_argmax(ctx, idx);
+ } break;
+ default:
+ {
+ GGML_LOG_ERROR("%s: error: node %3d, op = %8s not implemented\n", __func__, idx, ggml_op_name(node->op));
+ GGML_ABORT("fatal error");
+ }
+ }
+
+ if (ctx->debug_graph > 0) {
+ if (n_fuse > 1) {
+ GGML_LOG_DEBUG("%s: fuse %d ops\n", __func__, n_fuse);
+ }
+ }
+
+ // update the mem ranges in the encoding context
+ for (int i = 0; i < n_fuse; ++i) {
+ if (!ggml_metal_op_concurrency_add(ctx, nodes[i])) {
+ ggml_metal_op_concurrency_reset(ctx);
+ }
+ }
+
+ return n_fuse;
+}
+
+int ggml_metal_op_encode(ggml_metal_op_t ctx, int idx) {
+ if (ctx->use_capture) {
+ ggml_metal_encoder_debug_group_push(ctx->enc, ggml_op_desc(ggml_graph_node(ctx->gf, idx)));
+ }
+
+ int res = ggml_metal_op_encode_impl(ctx, idx);
+ if (idx + res > ctx->idx_end) {
+ GGML_ABORT("fusion error: nodes spanning multiple encoders have been fused. this indicates a bug in the fusion logic %s",
+ "https://github.com/ggml-org/llama.cpp/pull/14849");
+ }
+
+ if (ctx->use_capture) {
+ ggml_metal_encoder_debug_group_pop(ctx->enc);
+ }
+
+ return res;
+}
+
+int ggml_metal_op_concat(ggml_metal_op_t ctx, int idx) {
+ ggml_cgraph * gf = ctx->gf;
+ ggml_tensor * op = ggml_graph_node(gf, idx);
+
+ ggml_metal_library_t lib = ctx->lib;
+ ggml_metal_encoder_t enc = ctx->enc;
+
+ GGML_TENSOR_LOCALS( int32_t, ne0, op->src[0], ne);
+ GGML_TENSOR_LOCALS(uint64_t, nb0, op->src[0], nb);
+ GGML_TENSOR_LOCALS( int32_t, ne1, op->src[1], ne);
+ GGML_TENSOR_LOCALS(uint64_t, nb1, op->src[1], nb);
+ GGML_TENSOR_LOCALS( int32_t, ne, op, ne);
+ GGML_TENSOR_LOCALS(uint64_t, nb, op, nb);
+
+ const int32_t dim = ((const int32_t *) op->op_params)[0];
+
+ ggml_metal_kargs_concat args = {
+ /*.ne00 =*/ ne00,
+ /*.ne01 =*/ ne01,
+ /*.ne02 =*/ ne02,
+ /*.ne03 =*/ ne03,
+ /*.nb00 =*/ nb00,
+ /*.nb01 =*/ nb01,
+ /*.nb02 =*/ nb02,
+ /*.nb03 =*/ nb03,
+ /*.ne10 =*/ ne10,
+ /*.ne11 =*/ ne11,
+ /*.ne12 =*/ ne12,
+ /*.ne13 =*/ ne13,
+ /*.nb10 =*/ nb10,
+ /*.nb11 =*/ nb11,
+ /*.nb12 =*/ nb12,
+ /*.nb13 =*/ nb13,
+ /*.ne0 =*/ ne0,
+ /*.ne1 =*/ ne1,
+ /*.ne2 =*/ ne2,
+ /*.ne3 =*/ ne3,
+ /*.nb0 =*/ nb0,
+ /*.nb1 =*/ nb1,
+ /*.nb2 =*/ nb2,
+ /*.nb3 =*/ nb3,
+ /*.dim =*/ dim,
+ };
+
+ ggml_metal_pipeline_t pipeline = ggml_metal_library_get_pipeline_base(lib, GGML_OP_CONCAT);
+
+ ggml_metal_encoder_set_pipeline(enc, pipeline);
+ ggml_metal_encoder_set_bytes (enc, &args, sizeof(args), 0);
+ ggml_metal_encoder_set_buffer (enc, ggml_metal_get_buffer_id(op->src[0]), 1);
+ ggml_metal_encoder_set_buffer (enc, ggml_metal_get_buffer_id(op->src[1]), 2);
+ ggml_metal_encoder_set_buffer (enc, ggml_metal_get_buffer_id(op), 3);
+
+ const int nth = std::min(1024, ne0);
+
+ ggml_metal_encoder_dispatch_threadgroups(enc, ne1, ne2, ne3, nth, 1, 1);
+
+ return 1;
+}
+
+int ggml_metal_op_repeat(ggml_metal_op_t ctx, int idx) {
+ ggml_cgraph * gf = ctx->gf;
+ ggml_tensor * op = ggml_graph_node(gf, idx);
+
+ ggml_metal_library_t lib = ctx->lib;
+ ggml_metal_encoder_t enc = ctx->enc;
+
+ GGML_TENSOR_LOCALS( int32_t, ne0, op->src[0], ne);
+ GGML_TENSOR_LOCALS(uint64_t, nb0, op->src[0], nb);
+ GGML_TENSOR_LOCALS( int32_t, ne, op, ne);
+ GGML_TENSOR_LOCALS(uint32_t, nb, op, nb);
+
+ ggml_metal_pipeline_t pipeline = ggml_metal_library_get_pipeline_repeat(lib, op->type);
+
+ ggml_metal_kargs_repeat args = {
+ /*.ne00 =*/ ne00,
+ /*.ne01 =*/ ne01,
+ /*.ne02 =*/ ne02,
+ /*.ne03 =*/ ne03,
+ /*.nb00 =*/ nb00,
+ /*.nb01 =*/ nb01,
+ /*.nb02 =*/ nb02,
+ /*.nb03 =*/ nb03,
+ /*.ne0 =*/ ne0,
+ /*.ne1 =*/ ne1,
+ /*.ne2 =*/ ne2,
+ /*.ne3 =*/ ne3,
+ /*.nb0 =*/ nb0,
+ /*.nb1 =*/ nb1,
+ /*.nb2 =*/ nb2,
+ /*.nb3 =*/ nb3,
+ };
+
+ ggml_metal_encoder_set_pipeline(enc, pipeline);
+ ggml_metal_encoder_set_bytes (enc, &args, sizeof(args), 0);
+ ggml_metal_encoder_set_buffer (enc, ggml_metal_get_buffer_id(op->src[0]), 1);
+ ggml_metal_encoder_set_buffer (enc, ggml_metal_get_buffer_id(op), 2);
+
+ const int nth = std::min(ggml_metal_pipeline_max_theads_per_threadgroup(pipeline), ne0);
+
+ ggml_metal_encoder_dispatch_threadgroups(enc, ne1, ne2, ne3, nth, 1, 1);
+
+ return 1;
+}
+
+int ggml_metal_op_acc(ggml_metal_op_t ctx, int idx) {
+ ggml_cgraph * gf = ctx->gf;
+ ggml_tensor * op = ggml_graph_node(gf, idx);
+
+ ggml_metal_library_t lib = ctx->lib;
+ ggml_metal_encoder_t enc = ctx->enc;
+
+ GGML_TENSOR_LOCALS( int32_t, ne0, op->src[0], ne);
+ GGML_TENSOR_LOCALS(uint64_t, nb0, op->src[0], nb);
+ GGML_TENSOR_LOCALS( int32_t, ne1, op->src[1], ne);
+ GGML_TENSOR_LOCALS(uint64_t, nb1, op->src[1], nb);
+ GGML_TENSOR_LOCALS( int32_t, ne, op, ne);
+ GGML_TENSOR_LOCALS(uint32_t, nb, op, nb);
+
+ GGML_ASSERT(op->src[0]->type == GGML_TYPE_F32);
+ GGML_ASSERT(op->src[1]->type == GGML_TYPE_F32);
+ GGML_ASSERT(op->type == GGML_TYPE_F32);
+
+ GGML_ASSERT(ggml_is_contiguous(op->src[0]));
+ GGML_ASSERT(ggml_is_contiguous(op->src[1]));
+
+ const size_t pnb1 = ((const int32_t *) op->op_params)[0];
+ const size_t pnb2 = ((const int32_t *) op->op_params)[1];
+ const size_t pnb3 = ((const int32_t *) op->op_params)[2];
+ const size_t offs = ((const int32_t *) op->op_params)[3];
+
+ const bool inplace = (bool) ((const int32_t *) op->op_params)[4];
+
+ if (!inplace) {
+ // run a separete kernel to cpy src->dst
+ // not sure how to avoid this
+ // TODO: make a simpler cpy_bytes kernel
+
+ //const id<MTLComputePipelineState> pipeline = ctx->pipelines[GGML_METAL_PIPELINE_TYPE_CPY_F32_F32].obj;
+ ggml_metal_pipeline_t pipeline = ggml_metal_library_get_pipeline_cpy(lib, op->src[0]->type, op->type);
+
+ ggml_metal_kargs_cpy args = {
+ /*.ne00 =*/ ne00,
+ /*.ne01 =*/ ne01,
+ /*.ne02 =*/ ne02,
+ /*.ne03 =*/ ne03,
+ /*.nb00 =*/ nb00,
+ /*.nb01 =*/ nb01,
+ /*.nb02 =*/ nb02,
+ /*.nb03 =*/ nb03,
+ /*.ne0 =*/ ne0,
+ /*.ne1 =*/ ne1,
+ /*.ne2 =*/ ne2,
+ /*.ne3 =*/ ne3,
+ /*.nb0 =*/ nb0,
+ /*.nb1 =*/ nb1,
+ /*.nb2 =*/ nb2,
+ /*.nb3 =*/ nb3,
+ };
+
+ ggml_metal_encoder_set_pipeline(enc, pipeline);
+ ggml_metal_encoder_set_bytes (enc, &args, sizeof(args), 0);
+ ggml_metal_encoder_set_buffer (enc, ggml_metal_get_buffer_id(op->src[0]), 1);
+ ggml_metal_encoder_set_buffer (enc, ggml_metal_get_buffer_id(op), 2);
+
+ const int nth = std::min(ggml_metal_pipeline_max_theads_per_threadgroup(pipeline), ne00);
+
+ ggml_metal_encoder_dispatch_threadgroups(enc, ne01, ne02, ne03, nth, 1, 1);
+
+ ggml_metal_op_concurrency_reset(ctx);
+ }
+
+ ggml_metal_kargs_bin args = {
+ /*.ne00 =*/ ne00,
+ /*.ne01 =*/ ne01,
+ /*.ne02 =*/ ne02,
+ /*.ne03 =*/ ne03,
+ /*.nb00 =*/ nb00,
+ /*.nb01 =*/ pnb1,
+ /*.nb02 =*/ pnb2,
+ /*.nb03 =*/ pnb3,
+ /*.ne10 =*/ ne10,
+ /*.ne11 =*/ ne11,
+ /*.ne12 =*/ ne12,
+ /*.ne13 =*/ ne13,
+ /*.nb10 =*/ nb10,
+ /*.nb11 =*/ nb11,
+ /*.nb12 =*/ nb12,
+ /*.nb13 =*/ nb13,
+ /*.ne0 =*/ ne0,
+ /*.ne1 =*/ ne1,
+ /*.ne2 =*/ ne2,
+ /*.ne3 =*/ ne3,
+ /*.nb0 =*/ nb0,
+ /*.nb1 =*/ pnb1,
+ /*.nb2 =*/ pnb2,
+ /*.nb3 =*/ pnb3,
+ /*.offs =*/ offs,
+ /*.o1 =*/ { 0 },
+ };
+
+ ggml_metal_pipeline_t pipeline = ggml_metal_library_get_pipeline_bin(lib, GGML_OP_ADD, 1, false);
+
+ ggml_metal_encoder_set_pipeline(enc, pipeline);
+ ggml_metal_encoder_set_bytes (enc, &args, sizeof(args), 0);
+ ggml_metal_encoder_set_buffer (enc, ggml_metal_get_buffer_id(op->src[0]), 1);
+ ggml_metal_encoder_set_buffer (enc, ggml_metal_get_buffer_id(op->src[1]), 2);
+ ggml_metal_encoder_set_buffer (enc, ggml_metal_get_buffer_id(op), 3);
+
+ const int nth = std::min(ggml_metal_pipeline_max_theads_per_threadgroup(pipeline), ne00);
+
+ ggml_metal_encoder_dispatch_threadgroups(enc, ne11, ne12, ne13, nth, 1, 1);
+
+ return 1;
+}
+
+int ggml_metal_op_scale(ggml_metal_op_t ctx, int idx) {
+ ggml_cgraph * gf = ctx->gf;
+ ggml_tensor * op = ggml_graph_node(gf, idx);
+
+ ggml_metal_library_t lib = ctx->lib;
+ ggml_metal_encoder_t enc = ctx->enc;
+
+ GGML_TENSOR_LOCALS( int32_t, ne0, op->src[0], ne);
+ GGML_TENSOR_LOCALS(uint64_t, nb0, op->src[0], nb);
+ GGML_TENSOR_LOCALS( int32_t, ne, op, ne);
+ GGML_TENSOR_LOCALS(uint32_t, nb, op, nb);
+
+ float scale;
+ float bias;
+ memcpy(&scale, ((const int32_t *) op->op_params) + 0, sizeof(float));
+ memcpy(&bias, ((const int32_t *) op->op_params) + 1, sizeof(float));
+
+ ggml_metal_kargs_scale args = {
+ /*.scale =*/ scale,
+ /*.bias =*/ bias,
+ };
+
+ int64_t n = ggml_nelements(op);
+
+ if (n % 4 == 0) {
+ n /= 4;
+ }
+
+ ggml_metal_pipeline_t pipeline = ggml_metal_library_get_pipeline_unary(lib, op);
+
+ ggml_metal_encoder_set_pipeline(enc, pipeline);
+ ggml_metal_encoder_set_bytes (enc, &args, sizeof(args), 0);
+ ggml_metal_encoder_set_buffer (enc, ggml_metal_get_buffer_id(op->src[0]), 1);
+ ggml_metal_encoder_set_buffer (enc, ggml_metal_get_buffer_id(op), 2);
+
+ ggml_metal_encoder_dispatch_threadgroups(enc, n, 1, 1, 1, 1, 1);
+
+ return 1;
+}
+
+int ggml_metal_op_clamp(ggml_metal_op_t ctx, int idx) {
+ ggml_cgraph * gf = ctx->gf;
+ ggml_tensor * op = ggml_graph_node(gf, idx);
+
+ ggml_metal_library_t lib = ctx->lib;
+ ggml_metal_encoder_t enc = ctx->enc;
+
+ GGML_TENSOR_LOCALS( int32_t, ne0, op->src[0], ne);
+ GGML_TENSOR_LOCALS(uint64_t, nb0, op->src[0], nb);
+ GGML_TENSOR_LOCALS( int32_t, ne, op, ne);
+ GGML_TENSOR_LOCALS(uint32_t, nb, op, nb);
+
+ float min;
+ float max;
+ memcpy(&min, ((const int32_t *) op->op_params) + 0, sizeof(float));
+ memcpy(&max, ((const int32_t *) op->op_params) + 1, sizeof(float));
+
+ ggml_metal_kargs_clamp args = {
+ /*.min =*/ min,
+ /*.max =*/ max,
+ };
+
+ int64_t n = ggml_nelements(op);
+
+ if (n % 4 == 0) {
+ n /= 4;
+ }
+
+ ggml_metal_pipeline_t pipeline = ggml_metal_library_get_pipeline_unary(lib, op);
+
+ ggml_metal_encoder_set_pipeline(enc, pipeline);
+ ggml_metal_encoder_set_bytes (enc, &args, sizeof(args), 0);
+ ggml_metal_encoder_set_buffer (enc, ggml_metal_get_buffer_id(op->src[0]), 1);
+ ggml_metal_encoder_set_buffer (enc, ggml_metal_get_buffer_id(op), 2);
+
+ ggml_metal_encoder_dispatch_threadgroups(enc, n, 1, 1, 1, 1, 1);
+
+ return 1;
+}
+
+int ggml_metal_op_unary(ggml_metal_op_t ctx, int idx) {
+ ggml_cgraph * gf = ctx->gf;
+ ggml_tensor * op = ggml_graph_node(gf, idx);
+
+ ggml_metal_library_t lib = ctx->lib;
+ ggml_metal_encoder_t enc = ctx->enc;
+
+ GGML_TENSOR_LOCALS( int32_t, ne0, op->src[0], ne);
+ GGML_TENSOR_LOCALS(uint64_t, nb0, op->src[0], nb);
+ GGML_TENSOR_LOCALS( int32_t, ne, op, ne);
+ GGML_TENSOR_LOCALS(uint32_t, nb, op, nb);
+
+ int64_t n = ggml_nelements(op);
+
+ if (n % 4 == 0) {
+ n /= 4;
+ }
+
+ ggml_metal_pipeline_t pipeline = ggml_metal_library_get_pipeline_unary(lib, op);
+
+ ggml_metal_encoder_set_pipeline(enc, pipeline);
+ ggml_metal_encoder_set_buffer (enc, ggml_metal_get_buffer_id(op->src[0]), 0);
+ ggml_metal_encoder_set_buffer (enc, ggml_metal_get_buffer_id(op), 1);
+
+ ggml_metal_encoder_dispatch_threadgroups(enc, n, 1, 1, 1, 1, 1);
+
+ return 1;
+}
+
+int ggml_metal_op_glu(ggml_metal_op_t ctx, int idx) {
+ ggml_cgraph * gf = ctx->gf;
+ ggml_tensor * op = ggml_graph_node(gf, idx);
+
+ ggml_metal_library_t lib = ctx->lib;
+ ggml_metal_encoder_t enc = ctx->enc;
+
+ GGML_TENSOR_LOCALS( int32_t, ne0, op->src[0], ne);
+ GGML_TENSOR_LOCALS(uint64_t, nb0, op->src[0], nb);
+ GGML_TENSOR_LOCALS( int32_t, ne1, op->src[1], ne);
+ GGML_TENSOR_LOCALS(uint64_t, nb1, op->src[1], nb);
+ GGML_TENSOR_LOCALS( int32_t, ne, op, ne);
+ GGML_TENSOR_LOCALS(uint32_t, nb, op, nb);
+
+ if (op->src[1]) {
+ GGML_ASSERT(ggml_are_same_shape(op->src[0], op->src[1]));
+ }
+
+ ggml_metal_pipeline_t pipeline = ggml_metal_library_get_pipeline_glu(lib, op);
+
+ const int32_t swp = ggml_get_op_params_i32(op, 1);
+ const float alpha = ggml_get_op_params_f32(op, 2);
+ const float limit = ggml_get_op_params_f32(op, 3);
+
+ const int32_t i00 = swp ? ne0 : 0;
+ const int32_t i10 = swp ? 0 : ne0;
+
+ ggml_metal_kargs_glu args = {
+ /*.ne00 =*/ ne00,
+ /*.nb01 =*/ nb01,
+ /*.ne10 =*/ op->src[1] ? ne10 : ne00,
+ /*.nb11 =*/ op->src[1] ? nb11 : nb01,
+ /*.ne0 =*/ ne0,
+ /*.nb1 =*/ nb1,
+ /*.i00 =*/ op->src[1] ? 0 : i00,
+ /*.i10 =*/ op->src[1] ? 0 : i10,
+ /*.alpha=*/ alpha,
+ /*.limit=*/ limit
+ };
+
+ const int64_t nrows = ggml_nrows(op->src[0]);
+
+ const int32_t nth = std::min(ggml_metal_pipeline_max_theads_per_threadgroup(pipeline), ne00/2);
+
+ //[encoder setComputePipelineState:pipeline];
+ //[encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
+ //if (src1) {
+ // [encoder setBuffer:id_src1 offset:offs_src1 atIndex:1];
+ //} else {
+ // [encoder setBuffer:id_src0 offset:offs_src0 atIndex:1];
+ //}
+ //[encoder setBuffer:id_dst offset:offs_dst atIndex:2];
+ //[encoder setBytes:&args length:sizeof(args) atIndex:3];
+
+ //[encoder dispatchThreadgroups:MTLSizeMake(nrows, 1, 1) threadsPerThreadgroup:MTLSizeMake(nth, 1, 1)];
+
+ ggml_metal_encoder_set_pipeline(enc, pipeline);
+ ggml_metal_encoder_set_bytes (enc, &args, sizeof(args), 0);
+ ggml_metal_encoder_set_buffer (enc, ggml_metal_get_buffer_id(op->src[0]), 1);
+ if (op->src[1]) {
+ ggml_metal_encoder_set_buffer (enc, ggml_metal_get_buffer_id(op->src[1]), 2);
+ } else {
+ ggml_metal_encoder_set_buffer (enc, ggml_metal_get_buffer_id(op->src[0]), 2);
+ }
+ ggml_metal_encoder_set_buffer (enc, ggml_metal_get_buffer_id(op), 3);
+
+ ggml_metal_encoder_dispatch_threadgroups(enc, nrows, 1, 1, nth, 1, 1);
+
+ return 1;
+}
+
+int ggml_metal_op_sum_rows(ggml_metal_op_t ctx, int idx) {
+ ggml_cgraph * gf = ctx->gf;
+ ggml_tensor * op = ggml_graph_node(gf, idx);
+
+ ggml_metal_library_t lib = ctx->lib;
+ ggml_metal_encoder_t enc = ctx->enc;
+
+ GGML_TENSOR_LOCALS( int32_t, ne0, op->src[0], ne);
+ GGML_TENSOR_LOCALS(uint64_t, nb0, op->src[0], nb);
+ GGML_TENSOR_LOCALS( int32_t, ne, op, ne);
+ GGML_TENSOR_LOCALS(uint32_t, nb, op, nb);
+
+ ggml_metal_kargs_sum_rows args = {
+ /*.ne00 =*/ ne00,
+ /*.ne01 =*/ ne01,
+ /*.ne02 =*/ ne02,
+ /*.ne03 =*/ ne03,
+ /*.nb00 =*/ nb00,
+ /*.nb01 =*/ nb01,
+ /*.nb02 =*/ nb02,
+ /*.nb03 =*/ nb03,
+ /*.ne0 =*/ ne0,
+ /*.ne1 =*/ ne1,
+ /*.ne2 =*/ ne2,
+ /*.ne3 =*/ ne3,
+ /*.nb0 =*/ nb0,
+ /*.nb1 =*/ nb1,
+ /*.nb2 =*/ nb2,
+ /*.nb3 =*/ nb3,
+ };
+
+ ggml_metal_pipeline_t pipeline = ggml_metal_library_get_pipeline_sum_rows(lib, op);
+
+ int nth = 32; // SIMD width
+
+ while (nth < ne00 && nth < ggml_metal_pipeline_max_theads_per_threadgroup(pipeline)) {
+ nth *= 2;
+ }
+
+ nth = std::min(nth, ggml_metal_pipeline_max_theads_per_threadgroup(pipeline));
+ nth = std::min(nth, ne00);
+
+ const size_t smem = ggml_metal_pipeline_get_smem(pipeline);
+
+ //[encoder setComputePipelineState:pipeline];
+ //[encoder setBytes:&args length:sizeof(args) atIndex:0];
+ //[encoder setBuffer:id_src0 offset:offs_src0 atIndex:1];
+ //[encoder setBuffer:id_dst offset:offs_dst atIndex:2];
+ //[encoder setThreadgroupMemoryLength:32*sizeof(float) atIndex:0];
+
+ //[encoder dispatchThreadgroups:MTLSizeMake(ne01, ne02, ne03) threadsPerThreadgroup:MTLSizeMake(nth, 1, 1)];
+
+ ggml_metal_encoder_set_pipeline(enc, pipeline);
+ ggml_metal_encoder_set_bytes (enc, &args, sizeof(args), 0);
+ ggml_metal_encoder_set_buffer (enc, ggml_metal_get_buffer_id(op->src[0]), 1);
+ ggml_metal_encoder_set_buffer (enc, ggml_metal_get_buffer_id(op), 2);
+
+ ggml_metal_encoder_set_threadgroup_memory_size(enc, smem, 0);
+
+ ggml_metal_encoder_dispatch_threadgroups(enc, ne01, ne02, ne03, nth, 1, 1);
+
+ return 1;
+}
+
+int ggml_metal_op_get_rows(ggml_metal_op_t ctx, int idx) {
+ ggml_cgraph * gf = ctx->gf;
+ ggml_tensor * op = ggml_graph_node(gf, idx);
+
+ ggml_metal_library_t lib = ctx->lib;
+ ggml_metal_encoder_t enc = ctx->enc;
+
+ GGML_TENSOR_LOCALS( int32_t, ne0, op->src[0], ne);
+ GGML_TENSOR_LOCALS(uint64_t, nb0, op->src[0], nb);
+ GGML_TENSOR_LOCALS( int32_t, ne1, op->src[1], ne);
+ GGML_TENSOR_LOCALS(uint64_t, nb1, op->src[1], nb);
+ GGML_TENSOR_LOCALS( int32_t, ne, op, ne);
+ GGML_TENSOR_LOCALS(uint32_t, nb, op, nb);
+
+ ggml_metal_pipeline_t pipeline = ggml_metal_library_get_pipeline_get_rows(lib, op->src[0]->type);
+
+ ggml_metal_kargs_get_rows args = {
+ /*.ne00 =*/ ne00,
+ /*.nb01 =*/ nb01,
+ /*.nb02 =*/ nb02,
+ /*.ne10 =*/ ne10,
+ /*.nb10 =*/ nb10,
+ /*.nb11 =*/ nb11,
+ /*.nb1 =*/ nb1,
+ /*.nb2 =*/ nb2,
+ };
+
+ ggml_metal_encoder_set_pipeline(enc, pipeline);
+ ggml_metal_encoder_set_bytes (enc, &args, sizeof(args), 0);
+ ggml_metal_encoder_set_buffer (enc, ggml_metal_get_buffer_id(op->src[0]), 1);
+ ggml_metal_encoder_set_buffer (enc, ggml_metal_get_buffer_id(op->src[1]), 2);
+ ggml_metal_encoder_set_buffer (enc, ggml_metal_get_buffer_id(op), 3);
+
+ ggml_metal_encoder_dispatch_threadgroups(enc, ne10, ne11, ne12, 32, 1, 1);
+
+ return 1;
+}
+
+int ggml_metal_op_set_rows(ggml_metal_op_t ctx, int idx) {
+ ggml_cgraph * gf = ctx->gf;
+ ggml_tensor * op = ggml_graph_node(gf, idx);
+
+ ggml_metal_library_t lib = ctx->lib;
+ ggml_metal_encoder_t enc = ctx->enc;
+
+ GGML_TENSOR_LOCALS( int32_t, ne0, op->src[0], ne);
+ GGML_TENSOR_LOCALS(uint64_t, nb0, op->src[0], nb);
+ GGML_TENSOR_LOCALS( int32_t, ne1, op->src[1], ne);
+ GGML_TENSOR_LOCALS(uint64_t, nb1, op->src[1], nb);
+ GGML_TENSOR_LOCALS( int32_t, ne, op, ne);
+ GGML_TENSOR_LOCALS(uint32_t, nb, op, nb);
+
+ ggml_metal_pipeline_t pipeline = ggml_metal_library_get_pipeline_set_rows(lib, op->type);
+
+ const int32_t nk0 = ne0/ggml_blck_size(op->type);
+
+ int nth = 32; // SIMD width
+
+ while (nth < nk0 && nth < ggml_metal_pipeline_max_theads_per_threadgroup(pipeline)) {
+ nth *= 2;
+ }
+
+ int nrptg = 1;
+ if (nth > nk0) {
+ nrptg = (nth + nk0 - 1)/nk0;
+ nth = nk0;
+
+ if (nrptg*nth > ggml_metal_pipeline_max_theads_per_threadgroup(pipeline)) {
+ nrptg--;
+ }
+ }
+
+ nth = std::min(nth, nk0);
+
+ ggml_metal_kargs_set_rows args = {
+ /*.nk0 =*/ nk0,
+ /*.ne01 =*/ ne01,
+ /*.nb01 =*/ nb01,
+ /*.nb02 =*/ nb02,
+ /*.nb03 =*/ nb03,
+ /*.ne11 =*/ ne11,
+ /*.ne12 =*/ ne12,
+ /*.nb10 =*/ nb10,
+ /*.nb11 =*/ nb11,
+ /*.nb12 =*/ nb12,
+ /*.nb1 =*/ nb1,
+ /*.nb2 =*/ nb2,
+ /*.nb3 =*/ nb3,
+ };
+
+ ggml_metal_encoder_set_pipeline(enc, pipeline);
+ ggml_metal_encoder_set_bytes (enc, &args, sizeof(args), 0);
+ ggml_metal_encoder_set_buffer (enc, ggml_metal_get_buffer_id(op->src[0]), 1);
+ ggml_metal_encoder_set_buffer (enc, ggml_metal_get_buffer_id(op->src[1]), 2);
+ ggml_metal_encoder_set_buffer (enc, ggml_metal_get_buffer_id(op), 3);
+
+ ggml_metal_encoder_dispatch_threadgroups(enc, (ne01 + nrptg - 1)/nrptg, ne02, ne03, nth, nrptg, 1);
+
+ return 1;
+}
+
+int ggml_metal_op_soft_max(ggml_metal_op_t ctx, int idx) {
+ ggml_cgraph * gf = ctx->gf;
+ ggml_tensor * op = ggml_graph_node(gf, idx);
+
+ ggml_metal_library_t lib = ctx->lib;
+ ggml_metal_encoder_t enc = ctx->enc;
+
+ GGML_TENSOR_LOCALS( int32_t, ne0, op->src[0], ne);
+ GGML_TENSOR_LOCALS(uint64_t, nb0, op->src[0], nb);
+ GGML_TENSOR_LOCALS( int32_t, ne1, op->src[1], ne);
+ GGML_TENSOR_LOCALS(uint64_t, nb1, op->src[1], nb);
+ GGML_TENSOR_LOCALS( int32_t, ne2, op->src[2], ne);
+ GGML_TENSOR_LOCALS(uint64_t, nb2, op->src[2], nb);
+ GGML_TENSOR_LOCALS( int32_t, ne, op, ne);
+ GGML_TENSOR_LOCALS(uint32_t, nb, op, nb);
+
+ float scale;
+ float max_bias;
+
+ memcpy(&scale, ((const int32_t *) op->op_params) + 0, sizeof(scale));
+ memcpy(&max_bias, ((const int32_t *) op->op_params) + 1, sizeof(max_bias));
+
+ const uint32_t n_head = op->src[0]->ne[2];
+ const int32_t n_head_log2 = 1u << (uint32_t) floorf(log2f((float) n_head));
+
+ const float m0 = powf(2.0f, -(max_bias ) / n_head_log2);
+ const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_head_log2);
+
+ // softmax
+
+ ggml_metal_kargs_soft_max args = {
+ /*.ne00 =*/ ne00,
+ /*.ne01 =*/ ne01,
+ /*.ne02 =*/ ne02,
+ /*.nb01 =*/ nb01,
+ /*.nb02 =*/ nb02,
+ /*.nb03 =*/ nb03,
+ /*.ne11 =*/ ne11,
+ /*.ne12 =*/ ne12,
+ /*.ne13 =*/ ne13,
+ /*.nb11 =*/ nb11,
+ /*.nb12 =*/ nb12,
+ /*.nb13 =*/ nb13,
+ /*.nb1 =*/ nb1,
+ /*.nb2 =*/ nb2,
+ /*.nb3 =*/ nb3,
+ /*.scale =*/ scale,
+ /*.max_bias =*/ max_bias,
+ /*.m0 =*/ m0,
+ /*.m1 =*/ m1,
+ /*.n_head_log2 =*/ n_head_log2,
+ };
+
+ ggml_metal_pipeline_t pipeline = ggml_metal_library_get_pipeline_soft_max(lib, op);
+
+ int nth = 32; // SIMD width
+
+ if (ne00%4 == 0) {
+ while (nth < ne00/4 && nth*ne01*ne02*ne03 < 256) {
+ nth *= 2;
+ }
+ } else {
+ while (nth < ne00 && nth*ne01*ne02*ne03 < 256) {
+ nth *= 2;
+ }
+ }
+
+ const size_t smem = ggml_metal_pipeline_get_smem(pipeline);
+
+ ggml_metal_encoder_set_pipeline(enc, pipeline);
+ ggml_metal_encoder_set_bytes(enc, &args, sizeof(args), 0);
+ ggml_metal_encoder_set_buffer(enc, ggml_metal_get_buffer_id(op->src[0]), 1);
+ if (op->src[1]) {
+ ggml_metal_encoder_set_buffer(enc, ggml_metal_get_buffer_id(op->src[1]), 2);
+ } else {
+ ggml_metal_encoder_set_buffer(enc, ggml_metal_get_buffer_id(op->src[0]), 2);
+ }
+ if (op->src[2]) {
+ ggml_metal_encoder_set_buffer(enc, ggml_metal_get_buffer_id(op->src[2]), 3);
+ } else {
+ ggml_metal_encoder_set_buffer(enc, ggml_metal_get_buffer_id(op->src[0]), 3);
+ }
+ ggml_metal_encoder_set_buffer(enc, ggml_metal_get_buffer_id(op), 4);
+
+ ggml_metal_encoder_set_threadgroup_memory_size(enc, smem, 0);
+
+ ggml_metal_encoder_dispatch_threadgroups(enc, ne01, ne02, ne03, nth, 1, 1);
+
+ return 1;
+}
+
+int ggml_metal_op_ssm_conv(ggml_metal_op_t ctx, int idx) {
+ ggml_cgraph * gf = ctx->gf;
+ ggml_tensor * op = ggml_graph_node(gf, idx);
+
+ ggml_metal_library_t lib = ctx->lib;
+ ggml_metal_encoder_t enc = ctx->enc;
+
+ GGML_TENSOR_LOCALS( int32_t, ne0, op->src[0], ne);
+ GGML_TENSOR_LOCALS(uint64_t, nb0, op->src[0], nb);
+ GGML_TENSOR_LOCALS( int32_t, ne1, op->src[1], ne);
+ GGML_TENSOR_LOCALS(uint64_t, nb1, op->src[1], nb);
+ GGML_TENSOR_LOCALS( int32_t, ne, op, ne);
+ GGML_TENSOR_LOCALS(uint32_t, nb, op, nb);
+
+ ggml_metal_kargs_ssm_conv args = {
+ /*.ne00 =*/ ne00,
+ /*.ne01 =*/ ne01,
+ /*.ne02 =*/ ne02,
+ /*.nb00 =*/ nb00,
+ /*.nb01 =*/ nb01,
+ /*.nb02 =*/ nb02,
+ /*.ne10 =*/ ne10,
+ /*.ne11 =*/ ne11,
+ /*.nb10 =*/ nb10,
+ /*.nb11 =*/ nb11,
+ /*.ne0 =*/ ne0,
+ /*.ne1 =*/ ne1,
+ /*.ne2 =*/ ne2,
+ /*.nb0 =*/ nb0,
+ /*.nb1 =*/ nb1,
+ /*.nb2 =*/ nb2,
+ };
+
+ ggml_metal_pipeline_t pipeline = ggml_metal_library_get_pipeline_ssm_conv(lib, op);
+
+ ggml_metal_encoder_set_pipeline(enc, pipeline);
+ ggml_metal_encoder_set_bytes(enc, &args, sizeof(args), 0);
+ ggml_metal_encoder_set_buffer(enc, ggml_metal_get_buffer_id(op->src[0]), 1);
+ ggml_metal_encoder_set_buffer(enc, ggml_metal_get_buffer_id(op->src[1]), 2);
+ ggml_metal_encoder_set_buffer(enc, ggml_metal_get_buffer_id(op), 3);
+
+ ggml_metal_encoder_dispatch_threadgroups(enc, ne01, ne1, ne02, 1, 1, 1);
+
+ return 1;
+}
+
+int ggml_metal_op_ssm_scan(ggml_metal_op_t ctx, int idx) {
+ ggml_cgraph * gf = ctx->gf;
+ ggml_tensor * op = ggml_graph_node(gf, idx);
+
+ ggml_metal_library_t lib = ctx->lib;
+ ggml_metal_encoder_t enc = ctx->enc;
+
+ GGML_TENSOR_LOCALS( int32_t, ne0, op->src[0], ne);
+ GGML_TENSOR_LOCALS(uint64_t, nb0, op->src[0], nb);
+ GGML_TENSOR_LOCALS( int32_t, ne1, op->src[1], ne);
+ GGML_TENSOR_LOCALS(uint64_t, nb1, op->src[1], nb);
+ GGML_TENSOR_LOCALS( int32_t, ne2, op->src[2], ne);
+ GGML_TENSOR_LOCALS(uint64_t, nb2, op->src[2], nb);
+ GGML_TENSOR_LOCALS( int32_t, ne3, op->src[3], ne);
+ GGML_TENSOR_LOCALS(uint64_t, nb3, op->src[3], nb);
+ GGML_TENSOR_LOCALS( int32_t, ne4, op->src[4], ne);
+ GGML_TENSOR_LOCALS(uint64_t, nb4, op->src[4], nb);
+ GGML_TENSOR_LOCALS( int32_t, ne5, op->src[5], ne);
+ GGML_TENSOR_LOCALS(uint64_t, nb5, op->src[5], nb);
+ GGML_TENSOR_LOCALS( int32_t, ne6, op->src[6], ne);
+ GGML_TENSOR_LOCALS(uint64_t, nb6, op->src[6], nb);
+ GGML_TENSOR_LOCALS( int32_t, ne, op, ne);
+ GGML_TENSOR_LOCALS(uint32_t, nb, op, nb);
+
+ const ggml_tensor * src3 = op->src[3];
+ const ggml_tensor * src4 = op->src[4];
+ const ggml_tensor * src5 = op->src[5];
+ const ggml_tensor * src6 = op->src[6];
+
+ GGML_ASSERT(src3);
+ GGML_ASSERT(src4);
+ GGML_ASSERT(src5);
+ GGML_ASSERT(src6);
+
+ const int64_t d_state = ne00;
+ const int64_t d_inner = ne01;
+ const int64_t n_head = ne02;
+ const int64_t n_group = ne41;
+ const int64_t n_seq_tokens = ne12;
+ const int64_t n_seqs = ne13;
+
+ ggml_metal_kargs_ssm_scan args = {
+ /*.d_state =*/ d_state,
+ /*.d_inner =*/ d_inner,
+ /*.n_head =*/ n_head,
+ /*.n_group =*/ n_group,
+ /*.n_seq_tokens =*/ n_seq_tokens,
+ /*.n_seqs =*/ n_seqs,
+ /*.s_off =*/ ggml_nelements(op->src[1]) * sizeof(float),
+ /*.nb01 =*/ nb01,
+ /*.nb02 =*/ nb02,
+ /*.nb03 =*/ nb03,
+ /*.nb11 =*/ nb11,
+ /*.nb12 =*/ nb12,
+ /*.nb13 =*/ nb13,
+ /*.nb21 =*/ nb21,
+ /*.nb22 =*/ nb22,
+ /*.nb31 =*/ nb31,
+ /*.nb41 =*/ nb41,
+ /*.nb42 =*/ nb42,
+ /*.nb43 =*/ nb43,
+ /*.nb51 =*/ nb51,
+ /*.nb52 =*/ nb52,
+ /*.nb53 =*/ nb53,
+ };
+
+ ggml_metal_pipeline_t pipeline = ggml_metal_library_get_pipeline_ssm_scan(lib, op);
+
+ const size_t sms = ggml_metal_pipeline_get_smem(pipeline);
+
+ ggml_metal_encoder_set_pipeline(enc, pipeline);
+ ggml_metal_encoder_set_bytes (enc, &args, sizeof(args), 0);
+ ggml_metal_encoder_set_buffer (enc, ggml_metal_get_buffer_id(op->src[0]), 1);
+ ggml_metal_encoder_set_buffer (enc, ggml_metal_get_buffer_id(op->src[1]), 2);
+ ggml_metal_encoder_set_buffer (enc, ggml_metal_get_buffer_id(op->src[2]), 3);
+ ggml_metal_encoder_set_buffer (enc, ggml_metal_get_buffer_id(op->src[3]), 4);
+ ggml_metal_encoder_set_buffer (enc, ggml_metal_get_buffer_id(op->src[4]), 5);
+ ggml_metal_encoder_set_buffer (enc, ggml_metal_get_buffer_id(op->src[5]), 6);
+ ggml_metal_encoder_set_buffer (enc, ggml_metal_get_buffer_id(op->src[6]), 7);
+ ggml_metal_encoder_set_buffer (enc, ggml_metal_get_buffer_id(op), 8);
+
+ ggml_metal_encoder_set_threadgroup_memory_size(enc, sms, 0);
+
+ if (ne30 == 1) {
+ // Mamba-2
+ ggml_metal_encoder_dispatch_threadgroups(enc, d_inner, n_head, n_seqs, d_state, 1, 1);
+ } else {
+ GGML_ASSERT(d_inner == 1);
+ ggml_metal_encoder_dispatch_threadgroups(enc, n_head, n_seqs, 1, d_state, 1, 1);
+ }
+
+ return 1;
+}
+
+int ggml_metal_op_rwkv(ggml_metal_op_t ctx, int idx) {
+ ggml_cgraph * gf = ctx->gf;
+ ggml_tensor * op = ggml_graph_node(gf, idx);
+
+ ggml_metal_library_t lib = ctx->lib;
+ ggml_metal_encoder_t enc = ctx->enc;
+
+ GGML_TENSOR_LOCALS( int32_t, ne0, op->src[0], ne);
+ GGML_TENSOR_LOCALS(uint64_t, nb0, op->src[0], nb);
+ GGML_TENSOR_LOCALS( int32_t, ne, op, ne);
+ GGML_TENSOR_LOCALS(uint32_t, nb, op, nb);
+
+ const int64_t B = op->op == GGML_OP_RWKV_WKV6 ? op->src[5]->ne[1] : op->src[6]->ne[1];
+ const int64_t T = op->src[0]->ne[2];
+ const int64_t C = op->ne[0];
+ const int64_t H = op->src[0]->ne[1];
+
+ ggml_metal_pipeline_t pipeline = ggml_metal_library_get_pipeline_rwkv(lib, op);
+
+ int ida = 0;
+
+ ggml_metal_encoder_set_pipeline(enc, pipeline);
+ ggml_metal_encoder_set_buffer (enc, ggml_metal_get_buffer_id(op->src[0]), ida++);
+ ggml_metal_encoder_set_buffer (enc, ggml_metal_get_buffer_id(op->src[1]), ida++);
+ ggml_metal_encoder_set_buffer (enc, ggml_metal_get_buffer_id(op->src[2]), ida++);
+ ggml_metal_encoder_set_buffer (enc, ggml_metal_get_buffer_id(op->src[3]), ida++);
+ ggml_metal_encoder_set_buffer (enc, ggml_metal_get_buffer_id(op->src[4]), ida++);
+ ggml_metal_encoder_set_buffer (enc, ggml_metal_get_buffer_id(op->src[5]), ida++);
+ if (op->op == GGML_OP_RWKV_WKV7) {
+ ggml_metal_encoder_set_buffer (enc, ggml_metal_get_buffer_id(op->src[6]), ida++);
+ }
+ ggml_metal_encoder_set_buffer (enc, ggml_metal_get_buffer_id(op), ida++);
+ ggml_metal_encoder_set_bytes (enc, (void *) &B, sizeof(B), ida++);
+ ggml_metal_encoder_set_bytes (enc, (void *) &T, sizeof(T), ida++);
+ ggml_metal_encoder_set_bytes (enc, (void *) &C, sizeof(C), ida++);
+ ggml_metal_encoder_set_bytes (enc, (void *) &H, sizeof(H), ida++);
+
+ ggml_metal_encoder_dispatch_threadgroups(enc, B * H, 1, 1, C/H, 1, 1);
+
+ return 1;
+}
+
+int ggml_metal_op_cpy(ggml_metal_op_t ctx, int idx) {
+ ggml_cgraph * gf = ctx->gf;
+ ggml_tensor * op = ggml_graph_node(gf, idx);
+
+ ggml_metal_library_t lib = ctx->lib;
+ ggml_metal_encoder_t enc = ctx->enc;
+
+ GGML_TENSOR_LOCALS( int32_t, ne0, op->src[0], ne);
+ GGML_TENSOR_LOCALS(uint64_t, nb0, op->src[0], nb);
+ GGML_TENSOR_LOCALS( int32_t, ne, op, ne);
+ GGML_TENSOR_LOCALS(uint32_t, nb, op, nb);
+
+ ggml_metal_pipeline_t pipeline = ggml_metal_library_get_pipeline_cpy(lib, op->src[0]->type, op->type);
+
+ GGML_ASSERT(ne00 % ggml_blck_size(op->src[0]->type) == 0);
+
+ // TODO: support
+ //const int32_t nk00 = ne00/ggml_blck_size(op->type);
+ const int32_t nk00 = ne00;
+
+ int nth = 32; // SIMD width
+
+ while (nth < nk00 && nth < ggml_metal_pipeline_max_theads_per_threadgroup(pipeline)) {
+ nth *= 2;
+ }
+
+ nth = std::min(nth, ggml_metal_pipeline_max_theads_per_threadgroup(pipeline));
+
+ // when rows are small, we can batch them together in a single threadgroup
+ int nrptg = 1;
+
+ // TODO: relax this constraint in the future
+ if (ggml_blck_size(op->src[0]->type) == 1 && ggml_blck_size(op->type) == 1) {
+ if (nth > nk00) {
+ nrptg = (nth + nk00 - 1)/nk00;
+ nth = nk00;
+
+ if (nrptg*nth > ggml_metal_pipeline_max_theads_per_threadgroup(pipeline)) {
+ nrptg--;
+ }
+ }
+ }
+
+ nth = std::min(nth, nk00);
+
+ ggml_metal_kargs_cpy args = {
+ /*.ne00 =*/ nk00,
+ /*.ne01 =*/ ne01,
+ /*.ne02 =*/ ne02,
+ /*.ne03 =*/ ne03,
+ /*.nb00 =*/ nb00,
+ /*.nb01 =*/ nb01,
+ /*.nb02 =*/ nb02,
+ /*.nb03 =*/ nb03,
+ /*.ne0 =*/ ne0,
+ /*.ne1 =*/ ne1,
+ /*.ne2 =*/ ne2,
+ /*.ne3 =*/ ne3,
+ /*.nb0 =*/ nb0,
+ /*.nb1 =*/ nb1,
+ /*.nb2 =*/ nb2,
+ /*.nb3 =*/ nb3,
+ };
+
+ ggml_metal_encoder_set_pipeline(enc, pipeline);
+ ggml_metal_encoder_set_bytes (enc, &args, sizeof(args), 0);
+ ggml_metal_encoder_set_buffer (enc, ggml_metal_get_buffer_id(op->src[0]), 1);
+ ggml_metal_encoder_set_buffer (enc, ggml_metal_get_buffer_id(op), 2);
+
+ ggml_metal_encoder_dispatch_threadgroups(enc, ne01, ne02, ne03, nth, nrptg, 1);
+
+ return 1;
+}
+
+int ggml_metal_op_pool_2d(ggml_metal_op_t ctx, int idx) {
+ ggml_cgraph * gf = ctx->gf;
+ ggml_tensor * op = ggml_graph_node(gf, idx);
+
+ ggml_metal_library_t lib = ctx->lib;
+ ggml_metal_encoder_t enc = ctx->enc;
+
+ GGML_TENSOR_LOCALS( int32_t, ne0, op->src[0], ne);
+ GGML_TENSOR_LOCALS(uint64_t, nb0, op->src[0], nb);
+ GGML_TENSOR_LOCALS( int32_t, ne, op, ne);
+ GGML_TENSOR_LOCALS(uint32_t, nb, op, nb);
+
+ const int32_t * opts = op->op_params;
+ ggml_op_pool op_pool = (ggml_op_pool) opts[0];
+
+ const int32_t k0 = opts[1];
+ const int32_t k1 = opts[2];
+ const int32_t s0 = opts[3];
+ const int32_t s1 = opts[4];
+ const int32_t p0 = opts[5];
+ const int32_t p1 = opts[6];
+
+ const int64_t IH = op->src[0]->ne[1];
+ const int64_t IW = op->src[0]->ne[0];
+
+ const int64_t N = op->ne[3];
+ const int64_t OC = op->ne[2];
+ const int64_t OH = op->ne[1];
+ const int64_t OW = op->ne[0];
+
+ const int64_t np = N * OC * OH * OW;
+
+ ggml_metal_kargs_pool_2d args_pool_2d = {
+ /* .k0 = */ k0,
+ /* .k1 = */ k1,
+ /* .s0 = */ s0,
+ /* .s1 = */ s1,
+ /* .p0 = */ p0,
+ /* .p1 = */ p1,
+ /* .IH = */ IH,
+ /* .IW = */ IW,
+ /* .OH = */ OH,
+ /* .OW = */ OW,
+ /* .np = */ np
+ };
+
+ ggml_metal_pipeline_t pipeline = ggml_metal_library_get_pipeline_pool_2d(lib, op, op_pool);
+
+ const int nth = std::min(ggml_metal_pipeline_max_theads_per_threadgroup(pipeline), (int) np);
+ const int ntg = (np + nth - 1) / nth;
+
+ ggml_metal_encoder_set_pipeline(enc, pipeline);
+ ggml_metal_encoder_set_bytes (enc, &args_pool_2d, sizeof(args_pool_2d), 0);
+ ggml_metal_encoder_set_buffer (enc, ggml_metal_get_buffer_id(op->src[0]), 1);
+ ggml_metal_encoder_set_buffer (enc, ggml_metal_get_buffer_id(op), 2);
+
+ ggml_metal_encoder_dispatch_threadgroups(enc, ntg, 1, 1, nth, 1, 1);
+
+ return 1;
+}
+
+int ggml_metal_op_mul_mat(ggml_metal_op_t ctx, int idx) {
+ ggml_cgraph * gf = ctx->gf;
+ ggml_tensor * op = ggml_graph_node(gf, idx);
+
+ ggml_metal_library_t lib = ctx->lib;
+ ggml_metal_encoder_t enc = ctx->enc;
+
+ const ggml_metal_device_props * props_dev = ggml_metal_device_get_props(ctx->dev);
+
+ GGML_TENSOR_LOCALS( int32_t, ne0, op->src[0], ne);
+ GGML_TENSOR_LOCALS(uint64_t, nb0, op->src[0], nb);
+ GGML_TENSOR_LOCALS( int32_t, ne1, op->src[1], ne);
+ GGML_TENSOR_LOCALS(uint64_t, nb1, op->src[1], nb);
+ GGML_TENSOR_LOCALS( int32_t, ne, op, ne);
+ GGML_TENSOR_LOCALS(uint32_t, nb, op, nb);
+
+ GGML_ASSERT(ne00 == ne10);
+
+ GGML_ASSERT(ne12 % ne02 == 0);
+ GGML_ASSERT(ne13 % ne03 == 0);
+
+ const int16_t r2 = ne12/ne02;
+ const int16_t r3 = ne13/ne03;
+
+ // find the break-even point where the matrix-matrix kernel becomes more efficient compared
+ // to the matrix-vector kernel
+ const int ne11_mm_min = 8;
+
+ // first try to use small-batch mat-mv kernels
+ // these should be efficient for BS [2, ~8]
+ if (op->src[1]->type == GGML_TYPE_F32 && (ne00%128 == 0) &&
+ (
+ (
+ (
+ op->src[0]->type == GGML_TYPE_F32 || // TODO: helper function
+ op->src[0]->type == GGML_TYPE_F16 ||
+ op->src[0]->type == GGML_TYPE_Q4_0 ||
+ op->src[0]->type == GGML_TYPE_Q4_1 ||
+ op->src[0]->type == GGML_TYPE_Q5_0 ||
+ op->src[0]->type == GGML_TYPE_Q5_1 ||
+ op->src[0]->type == GGML_TYPE_Q8_0 ||
+ op->src[0]->type == GGML_TYPE_MXFP4 ||
+ op->src[0]->type == GGML_TYPE_IQ4_NL ||
+ false) && (ne11 >= 2 && ne11 <= 8)
+ ) ||
+ (
+ (
+ op->src[0]->type == GGML_TYPE_Q4_K ||
+ op->src[0]->type == GGML_TYPE_Q5_K ||
+ op->src[0]->type == GGML_TYPE_Q6_K ||
+ false) && (ne11 >= 4 && ne11 <= 8)
+ )
+ )
+ ) {
+ // TODO: determine the optimal parameters based on grid utilization
+ // I still don't know why we should not always use the maximum available threads:
+ //
+ // nsg = pipeline.maxTotalThreadsPerThreadgroup / 32
+ //
+ // my current hypothesis is that the work grid is not evenly divisible for different nsg
+ // values and there can be some tail effects when nsg is high. need to confirm this
+ //
+ const int nsg = 2; // num simdgroups per threadgroup
+
+ // num threads along row per simdgroup
+ int16_t nxpsg = 0;
+ if (ne00 % 256 == 0 && ne11 < 3) {
+ nxpsg = 16;
+ } else if (ne00 % 128 == 0) {
+ nxpsg = 8;
+ } else {
+ nxpsg = 4;
+ }
+
+ const int16_t nypsg = 32/nxpsg; // num threads along col per simdgroup (i.e. a simdgroup processes that many src0 rows at a time)
+ const int16_t r0ptg = nypsg*nsg; // num src0 rows per threadgroup
+ int16_t r1ptg = 4; // num src1 rows per threadgroup
+
+ // note: not sure how optimal are those across all different hardware. there might be someting cleverer
+ switch (ne11) {
+ case 2:
+ r1ptg = 2; break;
+ case 3:
+ case 6:
+ r1ptg = 3; break;
+ case 4:
+ case 7:
+ case 8:
+ r1ptg = 4; break;
+ case 5:
+ r1ptg = 5; break;
+ default:
+ GGML_ABORT("unsupported ne11");
+ };
+
+ ggml_metal_pipeline_t pipeline = ggml_metal_library_get_pipeline_mul_mv_ext(lib, op->src[0]->type, op->src[1]->type, r1ptg);
+
+ ggml_metal_kargs_mul_mv_ext args = {
+ /*.ne00 =*/ ne00,
+ /*.ne01 =*/ ne01,
+ /*.ne02 =*/ ne02,
+ /*.nb00 =*/ nb00,
+ /*.nb01 =*/ nb01,
+ /*.nb02 =*/ nb02,
+ /*.nb03 =*/ nb03,
+ /*.ne10 =*/ ne10,
+ /*.ne11 =*/ ne11,
+ /*.ne12 =*/ ne12,
+ /*.nb10 =*/ nb10,
+ /*.nb11 =*/ nb11,
+ /*.nb12 =*/ nb12,
+ /*.nb13 =*/ nb13,
+ /*.ne0 =*/ ne0,
+ /*.ne1 =*/ ne1,
+ /*.r2 =*/ r2,
+ /*.r3 =*/ r3,
+ /*.nsg =*/ nsg,
+ /*.nxpsg =*/ nxpsg,
+ /*.r1ptg =*/ r1ptg,
+ };
+
+ ggml_metal_encoder_set_pipeline(enc, pipeline);
+ ggml_metal_encoder_set_bytes (enc, &args, sizeof(args), 0);
+ ggml_metal_encoder_set_buffer (enc, ggml_metal_get_buffer_id(op->src[0]), 1);
+ ggml_metal_encoder_set_buffer (enc, ggml_metal_get_buffer_id(op->src[1]), 2);
+ ggml_metal_encoder_set_buffer (enc, ggml_metal_get_buffer_id(op), 3);
+
+ ggml_metal_encoder_dispatch_threadgroups(enc, ((ne01 + r0ptg - 1)/r0ptg), ((ne11 + r1ptg - 1)/r1ptg), ne12*ne13, 32, nsg, 1);
+ } else if (
+ !ggml_is_transposed(op->src[0]) &&
+ !ggml_is_transposed(op->src[1]) &&
+ // for now the matrix-matrix multiplication kernel only works on A14+/M1+ SoCs
+ // AMD GPU and older A-chips will reuse matrix-vector multiplication kernel
+ props_dev->has_simdgroup_mm &&
+ op->src[1]->type == GGML_TYPE_F32 &&
+ ne00 % 32 == 0 && ne00 >= 64 &&
+ (ne11 > ne11_mm_min || (ggml_is_quantized(op->src[0]->type) && ne12 > 1))) {
+ //printf("matrix: ne00 = %6d, ne01 = %6d, ne02 = %6d, ne11 = %6d, ne12 = %6d\n", ne00, ne01, ne02, ne11, ne12);
+
+ // some Metal matrix data types require aligned pointers
+ // ref: https://developer.apple.com/metal/Metal-Shading-Language-Specification.pdf (Table 2.5)
+ switch (op->src[0]->type) {
+ case GGML_TYPE_F32: GGML_ASSERT(nb01 % 16 == 0); break;
+ case GGML_TYPE_F16: GGML_ASSERT(nb01 % 8 == 0); break;
+ case GGML_TYPE_BF16: GGML_ASSERT(nb01 % 8 == 0); break;
+ default: break;
+ }
+
+ ggml_metal_pipeline_t pipeline = ggml_metal_library_get_pipeline_mul_mm(lib, op->src[0]->type, op->src[1]->type);
+
+ ggml_metal_kargs_mul_mm args = {
+ /*.ne00 =*/ ne00,
+ /*.ne02 =*/ ne02,
+ /*.nb01 =*/ nb01,
+ /*.nb02 =*/ nb02,
+ /*.nb03 =*/ nb03,
+ /*.ne12 =*/ ne12,
+ /*.nb10 =*/ nb10,
+ /*.nb11 =*/ nb11,
+ /*.nb12 =*/ nb12,
+ /*.nb13 =*/ nb13,
+ /*.ne0 =*/ ne0,
+ /*.ne1 =*/ ne1,
+ /*.r2 =*/ r2,
+ /*.r3 =*/ r3,
+ };
+
+ ggml_metal_encoder_set_pipeline(enc, pipeline);
+ ggml_metal_encoder_set_bytes (enc, &args, sizeof(args), 0);
+ ggml_metal_encoder_set_buffer (enc, ggml_metal_get_buffer_id(op->src[0]), 1);
+ ggml_metal_encoder_set_buffer (enc, ggml_metal_get_buffer_id(op->src[1]), 2);
+ ggml_metal_encoder_set_buffer (enc, ggml_metal_get_buffer_id(op), 3);
+
+ const size_t smem = ggml_metal_pipeline_get_smem(pipeline);
+
+ ggml_metal_encoder_set_threadgroup_memory_size(enc, smem, 0);
+ ggml_metal_encoder_dispatch_threadgroups(enc, ((ne11 + 31)/32), ((ne01 + 63)/64), ne12*ne13, 128, 1, 1);
+ } else {
+ ggml_metal_pipeline_t pipeline = ggml_metal_library_get_pipeline_mul_mv(lib, op);
+
+ ggml_metal_kargs_mul_mv args = {
+ /*.ne00 =*/ ne00,
+ /*.ne01 =*/ ne01,
+ /*.ne02 =*/ ne02,
+ /*.nb00 =*/ nb00,
+ /*.nb01 =*/ nb01,
+ /*.nb02 =*/ nb02,
+ /*.nb03 =*/ nb03,
+ /*.ne10 =*/ ne10,
+ /*.ne11 =*/ ne11,
+ /*.ne12 =*/ ne12,
+ /*.nb10 =*/ nb10,
+ /*.nb11 =*/ nb11,
+ /*.nb12 =*/ nb12,
+ /*.nb13 =*/ nb13,
+ /*.ne0 =*/ ne0,
+ /*.ne1 =*/ ne1,
+ /*.r2 =*/ r2,
+ /*.r3 =*/ r3,
+ };
+
+ const int nr0 = ggml_metal_pipeline_get_nr0(pipeline);
+ const int nr1 = ggml_metal_pipeline_get_nr1(pipeline);
+ const int nsg = ggml_metal_pipeline_get_nsg(pipeline);
+
+ const size_t smem = ggml_metal_pipeline_get_smem(pipeline);
+
+ ggml_metal_encoder_set_pipeline(enc, pipeline);
+ ggml_metal_encoder_set_bytes (enc, &args, sizeof(args), 0);
+ ggml_metal_encoder_set_buffer (enc, ggml_metal_get_buffer_id(op->src[0]), 1);
+ ggml_metal_encoder_set_buffer (enc, ggml_metal_get_buffer_id(op->src[1]), 2);
+ ggml_metal_encoder_set_buffer (enc, ggml_metal_get_buffer_id(op), 3);
+
+ ggml_metal_encoder_set_threadgroup_memory_size(enc, smem, 0);
+
+ if (op->src[0]->type == GGML_TYPE_Q8_0) {
+ ggml_metal_encoder_dispatch_threadgroups(enc, ((ne01 + nr0 - 1)/(nr0)), ((ne11 + nr1 - 1)/nr1), ne12*ne13, 32, nsg, 1);
+ } else {
+ ggml_metal_encoder_dispatch_threadgroups(enc, ((ne01 + nr0*nsg - 1)/(nr0*nsg)), ((ne11 + nr1 - 1)/nr1), ne12*ne13, 32, nsg, 1);
+ }
+ }
+
+ return 1;
+}
+
+size_t ggml_metal_op_mul_mat_id_extra_tpe(const ggml_tensor * op) {
+ assert(op->op == GGML_OP_MUL_MAT_ID);
+
+ const int64_t ne02 = op->src[0]->ne[2]; // n_expert
+
+ return ggml_type_size(GGML_TYPE_I32)*ne02;
+}
+
+size_t ggml_metal_op_mul_mat_id_extra_ids(const ggml_tensor * op) {
+ assert(op->op == GGML_OP_MUL_MAT_ID);
+
+ const int64_t ne02 = op->src[0]->ne[2]; // n_expert
+ const int64_t ne21 = op->src[2]->ne[1]; // n_token
+
+ return ggml_type_size(GGML_TYPE_I32)*ne02*ne21;
+}
+
+int ggml_metal_op_mul_mat_id(ggml_metal_op_t ctx, int idx) {
+ ggml_cgraph * gf = ctx->gf;
+ ggml_tensor * op = ggml_graph_node(gf, idx);
+
+ ggml_metal_library_t lib = ctx->lib;
+ ggml_metal_encoder_t enc = ctx->enc;
+
+ const ggml_metal_device_props * props_dev = ggml_metal_device_get_props(ctx->dev);
+
+ GGML_TENSOR_LOCALS( int32_t, ne0, op->src[0], ne);
+ GGML_TENSOR_LOCALS(uint64_t, nb0, op->src[0], nb);
+ GGML_TENSOR_LOCALS( int32_t, ne1, op->src[1], ne);
+ GGML_TENSOR_LOCALS(uint64_t, nb1, op->src[1], nb);
+ GGML_TENSOR_LOCALS( int32_t, ne2, op->src[2], ne);
+ GGML_TENSOR_LOCALS(uint64_t, nb2, op->src[2], nb);
+ GGML_TENSOR_LOCALS( int32_t, ne, op, ne);
+ GGML_TENSOR_LOCALS(uint32_t, nb, op, nb);
+
+ // src2 = ids
+ GGML_ASSERT(op->src[2]->type == GGML_TYPE_I32);
+
+ GGML_ASSERT(!ggml_is_transposed(op->src[0]));
+ GGML_ASSERT(!ggml_is_transposed(op->src[1]));
+
+ GGML_ASSERT(op->src[1]->type == GGML_TYPE_F32);
+
+ GGML_ASSERT(ne03 == 1);
+ GGML_ASSERT(ne13 == 1);
+
+ ggml_metal_buffer_id bid_src0 = ggml_metal_get_buffer_id(op->src[0]);
+ ggml_metal_buffer_id bid_src1 = ggml_metal_get_buffer_id(op->src[1]);
+ ggml_metal_buffer_id bid_src2 = ggml_metal_get_buffer_id(op->src[2]);
+ ggml_metal_buffer_id bid_dst = ggml_metal_get_buffer_id(op);
+
+ const uint32_t r2 = 1;
+ const uint32_t r3 = 1;
+
+ // find the break-even point where the matrix-matrix kernel becomes more efficient compared
+ // to the matrix-vector kernel
+ // ne20 = n_used_experts
+ // ne21 = n_rows (batch size)
+ const int ne21_mm_id_min = 32;
+
+ if (props_dev->has_simdgroup_mm &&
+ ne00 % 32 == 0 && ne00 >= 64 &&
+ (ne21 >= ne21_mm_id_min)) {
+ GGML_ASSERT(ne00 % 4 == 0);
+
+ // some Metal matrix data types require aligned pointers
+ // ref: https://developer.apple.com/metal/Metal-Shading-Language-Specification.pdf (Table 2.5)
+ switch (op->src[0]->type) {
+ case GGML_TYPE_F32: GGML_ASSERT(nb01 % 16 == 0); break;
+ case GGML_TYPE_F16: GGML_ASSERT(nb01 % 8 == 0); break;
+ case GGML_TYPE_BF16: GGML_ASSERT(nb01 % 8 == 0); break;
+ default: break;
+ }
+
+ // extra buffers for intermediate id mapping
+ ggml_metal_buffer_id bid_tpe = bid_dst;
+ bid_tpe.offs += ggml_nbytes(op);
+
+ ggml_metal_buffer_id bid_ids = bid_tpe;
+ bid_ids.offs += ggml_metal_op_mul_mat_id_extra_tpe(op);
+
+ {
+ ggml_metal_kargs_mul_mm_id_map0 args = {
+ ne02,
+ ne10,
+ ne11, // n_expert_used (bcast)
+ nb11,
+ nb12,
+ ne21, // n_tokens
+ ne20, // n_expert_used
+ nb21,
+ };
+
+ ggml_metal_pipeline_t pipeline = ggml_metal_library_get_pipeline_mul_mm_id_map0(lib, ne02, ne20);
+
+ const size_t smem = ggml_metal_pipeline_get_smem(pipeline);
+
+ GGML_ASSERT(ne02 <= ggml_metal_pipeline_max_theads_per_threadgroup(pipeline));
+
+ GGML_ASSERT(smem <= props_dev->max_theadgroup_memory_size);
+
+ ggml_metal_encoder_set_pipeline(enc, pipeline);
+ ggml_metal_encoder_set_bytes (enc, &args, sizeof(args), 0);
+ ggml_metal_encoder_set_buffer (enc, bid_src2, 1);
+ ggml_metal_encoder_set_buffer (enc, bid_tpe, 2);
+ ggml_metal_encoder_set_buffer (enc, bid_ids, 3);
+
+ ggml_metal_encoder_set_threadgroup_memory_size(enc, smem, 0);
+
+ ggml_metal_encoder_dispatch_threadgroups(enc, 1, 1, 1, ne02, 1, 1);
+ }
+
+ // this barrier is always needed because the next kernel has to wait for the id maps to be computed
+ ggml_metal_op_concurrency_reset(ctx);
+
+ {
+ ggml_metal_pipeline_t pipeline = ggml_metal_library_get_pipeline_mul_mm_id(lib, op->src[0]->type, GGML_TYPE_F16);
+
+ ggml_metal_kargs_mul_mm_id args = {
+ /*.ne00 =*/ ne00,
+ /*.ne02 =*/ ne02,
+ /*.nb01 =*/ nb01,
+ /*.nb02 =*/ nb02,
+ /*.nb03 =*/ nb03,
+ /*.ne11 =*/ ne11, // n_expert_used (bcast)
+ /*.nb10 =*/ nb10,
+ /*.nb11 =*/ nb11,
+ /*.nb12 =*/ nb12,
+ /*.nb13 =*/ nb13,
+ /*.ne20 =*/ ne20, // n_expert_used
+ /*.ne21 =*/ ne21, // n_tokens
+ /*.ne0 =*/ ne0,
+ /*.ne1 =*/ ne1,
+ /*.r2 =*/ r2,
+ /*.r3 =*/ r3,
+ };
+
+ ggml_metal_encoder_set_pipeline(enc, pipeline);
+ ggml_metal_encoder_set_bytes (enc, &args, sizeof(args), 0);
+ ggml_metal_encoder_set_buffer (enc, bid_src0, 1);
+ ggml_metal_encoder_set_buffer (enc, bid_src1, 2);
+ ggml_metal_encoder_set_buffer (enc, bid_tpe, 3);
+ ggml_metal_encoder_set_buffer (enc, bid_ids, 4);
+ ggml_metal_encoder_set_buffer (enc, bid_dst, 5);
+
+ const size_t smem = ggml_metal_pipeline_get_smem(pipeline);
+
+ ggml_metal_encoder_set_threadgroup_memory_size(enc, smem, 0);
+
+ ggml_metal_encoder_dispatch_threadgroups(enc, (ne21 + 31)/32, (ne01 + 63)/64, ne02, 128, 1, 1);
+ }
+ } else {
+ ggml_metal_kargs_mul_mv_id args = {
+ /*.nei0 =*/ ne20,
+ /*.nei1 =*/ ne21,
+ /*.nbi1 =*/ nb21,
+ /*.ne00 =*/ ne00,
+ /*.ne01 =*/ ne01,
+ /*.ne02 =*/ ne02,
+ /*.nb00 =*/ nb00,
+ /*.nb01 =*/ nb01,
+ /*.nb02 =*/ nb02,
+ /*.ne10 =*/ ne10,
+ /*.ne11 =*/ ne11,
+ /*.ne12 =*/ ne12,
+ /*.ne13 =*/ ne13,
+ /*.nb10 =*/ nb10,
+ /*.nb11 =*/ nb11,
+ /*.nb12 =*/ nb12,
+ /*.ne0 =*/ ne0,
+ /*.ne1 =*/ ne1,
+ /*.nb1 =*/ nb1,
+ };
+
+ ggml_metal_pipeline_t pipeline = ggml_metal_library_get_pipeline_mul_mv_id(lib, op);
+
+ const int nr0 = ggml_metal_pipeline_get_nr0(pipeline);
+ const int nr1 = ggml_metal_pipeline_get_nr1(pipeline);
+ const int nsg = ggml_metal_pipeline_get_nsg(pipeline);
+
+ const size_t smem = ggml_metal_pipeline_get_smem(pipeline);
+
+ if (ggml_is_quantized(op->src[0]->type)) {
+ GGML_ASSERT(ne00 >= nsg*nr0);
+ }
+
+ ggml_metal_encoder_set_pipeline(enc, pipeline);
+ ggml_metal_encoder_set_bytes(enc, &args, sizeof(args), 0);
+ ggml_metal_encoder_set_buffer(enc, bid_src0, 1);
+ ggml_metal_encoder_set_buffer(enc, bid_src1, 2);
+ ggml_metal_encoder_set_buffer(enc, bid_dst, 3);
+ ggml_metal_encoder_set_buffer(enc, bid_src2, 4);
+
+ const int64_t _ne1 = 1;
+ const int64_t ne123 = ne20*ne21;
+
+ ggml_metal_encoder_set_threadgroup_memory_size(enc, smem, 0);
+
+ if (op->src[0]->type == GGML_TYPE_Q8_0) {
+ ggml_metal_encoder_dispatch_threadgroups(enc, (ne01 + nr0 - 1)/(nr0), (_ne1 + nr1 - 1)/nr1, ne123, 32, nsg, 1);
+ } else {
+ ggml_metal_encoder_dispatch_threadgroups(enc, (ne01 + nr0*nsg - 1)/(nr0*nsg), (_ne1 + nr1 - 1)/nr1, ne123, 32, nsg, 1);
+ }
+ }
+
+ return 1;
+}
+
+int ggml_metal_op_add_id(ggml_metal_op_t ctx, int idx) {
+ ggml_cgraph * gf = ctx->gf;
+ ggml_tensor * op = ggml_graph_node(gf, idx);
+
+ ggml_metal_library_t lib = ctx->lib;
+ ggml_metal_encoder_t enc = ctx->enc;
+
+ GGML_TENSOR_LOCALS( int32_t, ne0, op->src[0], ne);
+ GGML_TENSOR_LOCALS(uint64_t, nb0, op->src[0], nb);
+ GGML_TENSOR_LOCALS( int32_t, ne1, op->src[1], ne);
+ GGML_TENSOR_LOCALS(uint64_t, nb1, op->src[1], nb);
+ GGML_TENSOR_LOCALS( int32_t, ne2, op->src[2], ne);
+ GGML_TENSOR_LOCALS(uint64_t, nb2, op->src[2], nb);
+ GGML_TENSOR_LOCALS( int32_t, ne, op, ne);
+
+ GGML_ASSERT(op->src[0]->type == GGML_TYPE_F32);
+ GGML_ASSERT(op->src[1]->type == GGML_TYPE_F32);
+ GGML_ASSERT(op->src[2]->type == GGML_TYPE_I32);
+ GGML_ASSERT(op->type == GGML_TYPE_F32);
+
+ GGML_ASSERT(ggml_is_contiguous_rows(op->src[0]));
+
+ ggml_metal_kargs_add_id args = {
+ /*.ne0 =*/ ne0,
+ /*.ne1 =*/ ne1,
+ /*.nb01 =*/ nb01,
+ /*.nb02 =*/ nb02,
+ /*.nb11 =*/ nb11,
+ /*.nb21 =*/ nb21,
+ };
+
+ ggml_metal_pipeline_t pipeline = ggml_metal_library_get_pipeline_base(lib, GGML_OP_ADD_ID);
+
+ ggml_metal_encoder_set_pipeline(enc, pipeline);
+ ggml_metal_encoder_set_bytes (enc, &args, sizeof(args), 0);
+ ggml_metal_encoder_set_buffer (enc, ggml_metal_get_buffer_id(op->src[0]), 1);
+ ggml_metal_encoder_set_buffer (enc, ggml_metal_get_buffer_id(op->src[1]), 2);
+ ggml_metal_encoder_set_buffer (enc, ggml_metal_get_buffer_id(op->src[2]), 3);
+ ggml_metal_encoder_set_buffer (enc, ggml_metal_get_buffer_id(op), 4);
+
+ const int nth = std::min(ggml_metal_pipeline_max_theads_per_threadgroup(pipeline), ne00);
+
+ ggml_metal_encoder_dispatch_threadgroups(enc, ne01, ne02, 1, nth, 1, 1);
+
+ return 1;
+}
+
+bool ggml_metal_op_flash_attn_ext_use_vec(const ggml_tensor * op) {
+ assert(op->op == GGML_OP_FLASH_ATTN_EXT);
+
+ const int64_t ne00 = op->src[0]->ne[0]; // head size
+ const int64_t ne01 = op->src[0]->ne[1]; // batch size
+
+ // use vec kernel if the batch size is small and if the head size is supported
+ return (ne01 < 20) && (ne00 % 32 == 0);
+}
+
+size_t ggml_metal_op_flash_attn_ext_extra_tmp(const ggml_tensor * op) {
+ assert(op->op == GGML_OP_FLASH_ATTN_EXT);
+
+ const int64_t nwg = 32;
+
+ const int64_t ne01 = op->src[0]->ne[1];
+ const int64_t ne02 = op->src[0]->ne[2];
+ const int64_t ne03 = op->src[0]->ne[3];
+ const int64_t ne20 = op->src[2]->ne[0];
+
+ // temp buffer for writing the results from each workgroup
+ // - ne20: the size of the Value head
+ // - + 2: the S and M values for each intermediate result
+ return ggml_type_size(GGML_TYPE_F32)*(ne01*ne02*ne03*nwg*(ne20 + 2));
+}
+
+int ggml_metal_op_flash_attn_ext(ggml_metal_op_t ctx, int idx) {
+ ggml_cgraph * gf = ctx->gf;
+ ggml_tensor * op = ggml_graph_node(gf, idx);
+
+ ggml_metal_library_t lib = ctx->lib;
+ ggml_metal_encoder_t enc = ctx->enc;
+
+ const ggml_metal_device_props * props_dev = ggml_metal_device_get_props(ctx->dev);
+
+ GGML_TENSOR_LOCALS( int32_t, ne0, op->src[0], ne);
+ GGML_TENSOR_LOCALS(uint64_t, nb0, op->src[0], nb);
+ GGML_TENSOR_LOCALS( int32_t, ne1, op->src[1], ne);
+ GGML_TENSOR_LOCALS(uint64_t, nb1, op->src[1], nb);
+ GGML_TENSOR_LOCALS( int32_t, ne2, op->src[2], ne);
+ GGML_TENSOR_LOCALS(uint64_t, nb2, op->src[2], nb);
+ GGML_TENSOR_LOCALS( int32_t, ne3, op->src[3], ne);
+ GGML_TENSOR_LOCALS(uint64_t, nb3, op->src[3], nb);
+ GGML_TENSOR_LOCALS( int32_t, ne, op, ne);
+ GGML_TENSOR_LOCALS( int32_t, nb, op, nb);
+
+ GGML_ASSERT(ne00 % 4 == 0);
+ GGML_ASSERT(ne11 % 32 == 0);
+
+ GGML_ASSERT(op->src[0]->type == GGML_TYPE_F32);
+ GGML_ASSERT(op->src[1]->type == op->src[2]->type);
+
+ //GGML_ASSERT(ggml_are_same_shape (src1, src2));
+ GGML_ASSERT(ne11 == ne21);
+ GGML_ASSERT(ne12 == ne22);
+
+ GGML_ASSERT(!op->src[3] || op->src[3]->type == GGML_TYPE_F16);
+ GGML_ASSERT(!op->src[3] || op->src[3]->ne[1] >= GGML_PAD(op->src[0]->ne[1], 8) &&
+ "the Flash-Attention Metal kernel requires the mask to be padded to 8 and at least n_queries big");
+
+ float scale;
+ float max_bias;
+ float logit_softcap;
+
+ memcpy(&scale, ((const int32_t *) op->op_params) + 0, sizeof(scale));
+ memcpy(&max_bias, ((const int32_t *) op->op_params) + 1, sizeof(max_bias));
+ memcpy(&logit_softcap, ((const int32_t *) op->op_params) + 2, sizeof(logit_softcap));
+
+ if (logit_softcap != 0.0f) {
+ scale /= logit_softcap;
+ }
+
+ const bool has_mask = op->src[3] != NULL;
+ const bool has_sinks = op->src[4] != NULL;
+ const bool has_bias = max_bias != 0.0f;
+ const bool has_scap = logit_softcap != 0.0f;
+
+ const uint32_t n_head = op->src[0]->ne[2];
+ const int32_t n_head_log2 = 1u << (uint32_t) floorf(log2f((float) n_head));
+
+ const float m0 = powf(2.0f, -(max_bias ) / n_head_log2);
+ const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_head_log2);
+
+ GGML_ASSERT(ne01 < 65536);
+
+ if (!ggml_metal_op_flash_attn_ext_use_vec(op)) {
+ // half8x8 kernel
+ const int64_t nqptg = 8; // queries per threadgroup !! sync with kernel template arguments !!
+ const int64_t ncpsg = 64; // cache values per simdgroup !! sync with kernel template arguments !!
+
+ GGML_ASSERT(nqptg <= 32);
+ GGML_ASSERT(nqptg % 8 == 0);
+ GGML_ASSERT(ncpsg % 32 == 0);
+
+ const int is_q = ggml_is_quantized(op->src[1]->type) ? 1 : 0;
+
+ // 2*(2*ncpsg)
+ // ncpsg soft_max values + ncpsg mask values
+ //
+ // 16*32*(nsg)
+ // the shared memory needed for the simdgroups to load the KV cache
+ // each thread loads (dequantizes) 16 head elements, there are 32 threads in th SG
+ //
+#define FATTN_SMEM(nsg) (GGML_PAD((nqptg*(ne00 + 2*GGML_PAD(ne20, 64) + 2*(2*ncpsg)) + is_q*(16*32*(nsg)))*(sizeof(float)/2), 16))
+
+ //int64_t nsgmax = 4;
+ //
+ //if (is_q) {
+ // nsgmax = 2;
+ // while (true) {
+ // const size_t smem = FATTN_SMEM(nsgmax);
+ // if (smem > props_dev->max_theadgroup_memory_size) {
+ // break;
+ // }
+ // nsgmax *= 2;
+ // }
+ // nsgmax /= 2;
+ //}
+
+ // simdgroups per threadgroup (a.k.a. warps)
+ //nsg = ne01 <= nqptg ? MAX(4, MIN(nsgmax, MIN(ne11/ncpsg, (int64_t) pipeline.maxTotalThreadsPerThreadgroup/32))) : 4;
+ int32_t nsg = 4;
+
+ const size_t smem = FATTN_SMEM(nsg);
+
+ ggml_metal_kargs_flash_attn_ext args = {
+ /*.ne01 =*/ ne01,
+ /*.ne02 =*/ ne02,
+ /*.ne03 =*/ ne03,
+ /*.nb01 =*/ nb01,
+ /*.nb02 =*/ nb02,
+ /*.nb03 =*/ nb03,
+ /*.ne11 =*/ ne11,
+ /*.ne_12_2 =*/ ne12,
+ /*.ne_12_3 =*/ ne13,
+ /*.ns10 =*/ int32_t(nb11/nb10),
+ /*.nb11 =*/ nb11,
+ /*.nb12 =*/ nb12,
+ /*.nb13 =*/ nb13,
+ /*.ns20 =*/ int32_t(nb21/nb20),
+ /*.nb21 =*/ nb21,
+ /*.nb22 =*/ nb22,
+ /*.nb23 =*/ nb23,
+ /*.ne32 =*/ ne32,
+ /*.ne33 =*/ ne33,
+ /*.nb31 =*/ nb31,
+ /*.nb32 =*/ nb32,
+ /*.nb33 =*/ nb33,
+ /*.ne1 =*/ ne1,
+ /*.ne2 =*/ ne2,
+ /*.ne3 =*/ ne3,
+ /*.scale =*/ scale,
+ /*.max_bias =*/ max_bias,
+ /*.m0 =*/ m0,
+ /*.m1 =*/ m1,
+ /*.n_head_log2 =*/ n_head_log2,
+ /*.logit_softcap =*/ logit_softcap,
+ };
+
+ ggml_metal_pipeline_t pipeline = ggml_metal_library_get_pipeline_flash_attn_ext(lib, op, has_mask, has_sinks, has_bias, has_scap, nsg);
+
+ ggml_metal_encoder_set_pipeline(enc, pipeline);
+ ggml_metal_encoder_set_bytes (enc, &args, sizeof(args), 0);
+ ggml_metal_encoder_set_buffer (enc, ggml_metal_get_buffer_id(op->src[0]), 1);
+ ggml_metal_encoder_set_buffer (enc, ggml_metal_get_buffer_id(op->src[1]), 2);
+ ggml_metal_encoder_set_buffer (enc, ggml_metal_get_buffer_id(op->src[2]), 3);
+ if (op->src[3]) {
+ ggml_metal_encoder_set_buffer(enc, ggml_metal_get_buffer_id(op->src[3]), 4);
+ } else {
+ ggml_metal_encoder_set_buffer(enc, ggml_metal_get_buffer_id(op->src[0]), 4);
+ }
+ if (op->src[4]) {
+ ggml_metal_encoder_set_buffer(enc, ggml_metal_get_buffer_id(op->src[4]), 5);
+ } else {
+ ggml_metal_encoder_set_buffer(enc, ggml_metal_get_buffer_id(op->src[0]), 5);
+ }
+ ggml_metal_encoder_set_buffer (enc, ggml_metal_get_buffer_id(op), 6);
+
+ ggml_metal_encoder_set_threadgroup_memory_size(enc, smem, 0);
+
+ ggml_metal_encoder_dispatch_threadgroups(enc, (ne01 + nqptg - 1)/nqptg, ne02, ne03, 32, nsg, 1);
+#undef FATTN_SMEM
+ } else {
+ // half4x4 kernel
+ const int64_t nqptg = 1; // queries per threadgroup !! sync with kernel template arguments !!
+ const int64_t ncpsg = 32; // cache values per simdgroup !! sync with kernel template arguments !!
+ const int64_t nkpsg = 1*ncpsg;
+
+ GGML_ASSERT(nqptg <= 32);
+ GGML_ASSERT(nqptg % 1 == 0);
+ GGML_ASSERT(ncpsg % 32 == 0);
+
+ // ne00 + 2*ncpsg*(nsg)
+ // for each query, we load it as f16 in shared memory (ne00)
+ // and store the soft_max values and the mask
+ //
+ // ne20*(nsg)
+ // each simdgroup has a full f32 head vector in shared mem to accumulate results
+ //
+#define FATTN_SMEM(nsg) (GGML_PAD((nqptg*(GGML_PAD(ne00, 128) + 4*ncpsg*(nsg)) + 2*GGML_PAD(ne20, 128)*(nsg))*(sizeof(float)/2), 16))
+
+ int64_t nsgmax = 2;
+ while (true) {
+ const size_t smem = FATTN_SMEM(nsgmax);
+ // avoid using more than half of the threadgroup memory - can cause slow downs especially for large head sizes
+ if (smem > props_dev->max_theadgroup_memory_size/2) {
+ break;
+ }
+ nsgmax *= 2;
+ }
+ nsgmax /= 2;
+
+ // simdgroups per threadgroup (a.k.a. warps)
+ //const int64_t nsgt = MAX(2, MIN(nsgmax, MIN((ne11 + nkpsg - 1)/(nkpsg), (int64_t) pipeline.maxTotalThreadsPerThreadgroup/32)));
+ const int64_t nsgt = MAX(2, MIN(nsgmax, MIN((ne11 + nkpsg - 1)/(nkpsg), (int64_t) 1024/32)));
+
+ int64_t nsg = 1;
+ while (nsg <= nsgt) {
+ nsg *= 2;
+ }
+ nsg /= 2;
+
+ // workgroups
+ // each workgroup handles nsg*nkpsg cache values
+ int32_t nwg = 1;
+ if (false) {
+ // for small KV caches, we could launch a single workgroup and write the results directly to dst/
+ // however, this does not lead to significant improvement, so disabled
+ nwg = 1;
+ nsg = 4;
+ } else {
+ nwg = 32;
+ nsg = 1;
+ while (2*nwg*nsg*nkpsg < ne11 && nsg < 4) {
+ nsg *= 2;
+ }
+ }
+
+ ggml_metal_kargs_flash_attn_ext_vec args = {
+ /*.ne01 =*/ ne01,
+ /*.ne02 =*/ ne02,
+ /*.ne03 =*/ ne03,
+ /*.nb01 =*/ nb01,
+ /*.nb02 =*/ nb02,
+ /*.nb03 =*/ nb03,
+ /*.ne11 =*/ ne11,
+ /*.ne_12_2 =*/ ne12,
+ /*.ne_12_3 =*/ ne13,
+ /*.ns10 =*/ int32_t(nb11/nb10),
+ /*.nb11 =*/ nb11,
+ /*.nb12 =*/ nb12,
+ /*.nb13 =*/ nb13,
+ /*.ns20 =*/ int32_t(nb21/nb20),
+ /*.nb21 =*/ nb21,
+ /*.nb22 =*/ nb22,
+ /*.nb23 =*/ nb23,
+ /*.ne32 =*/ ne32,
+ /*.ne33 =*/ ne33,
+ /*.nb31 =*/ nb31,
+ /*.nb32 =*/ nb32,
+ /*.nb33 =*/ nb33,
+ /*.ne1 =*/ ne1,
+ /*.ne2 =*/ ne2,
+ /*.ne3 =*/ ne3,
+ /*.scale =*/ scale,
+ /*.max_bias =*/ max_bias,
+ /*.m0 =*/ m0,
+ /*.m1 =*/ m1,
+ /*.n_head_log2 =*/ n_head_log2,
+ /*.logit_softcap =*/ logit_softcap,
+ };
+
+ ggml_metal_pipeline_t pipeline = ggml_metal_library_get_pipeline_flash_attn_ext_vec(lib, op, has_mask, has_sinks, has_bias, has_scap, nsg, nwg);
+
+ GGML_ASSERT(nsg*32 <= ggml_metal_pipeline_max_theads_per_threadgroup(pipeline));
+
+ ggml_metal_encoder_set_pipeline(enc, pipeline);
+ ggml_metal_encoder_set_bytes (enc, &args, sizeof(args), 0);
+ ggml_metal_encoder_set_buffer (enc, ggml_metal_get_buffer_id(op->src[0]), 1);
+ ggml_metal_encoder_set_buffer (enc, ggml_metal_get_buffer_id(op->src[1]), 2);
+ ggml_metal_encoder_set_buffer (enc, ggml_metal_get_buffer_id(op->src[2]), 3);
+ if (op->src[3]) {
+ ggml_metal_encoder_set_buffer(enc, ggml_metal_get_buffer_id(op->src[3]), 4);
+ } else {
+ ggml_metal_encoder_set_buffer(enc, ggml_metal_get_buffer_id(op->src[0]), 4);
+ }
+ if (op->src[4]) {
+ ggml_metal_encoder_set_buffer(enc, ggml_metal_get_buffer_id(op->src[4]), 5);
+ } else {
+ ggml_metal_encoder_set_buffer(enc, ggml_metal_get_buffer_id(op->src[0]), 5);
+ }
+
+ const size_t smem = FATTN_SMEM(nsg);
+
+ //printf("smem: %zu, max: %zu, nsg = %d, nsgmax = %d\n", smem, props_dev->max_theadgroup_memory_size, (int) nsg, (int) nsgmax);
+ GGML_ASSERT(smem <= props_dev->max_theadgroup_memory_size);
+
+ if (nwg == 1) {
+ // using 1 workgroup -> write the result directly into dst
+ ggml_metal_encoder_set_buffer(enc, ggml_metal_get_buffer_id(op), 6);
+
+ ggml_metal_encoder_set_threadgroup_memory_size(enc, smem, 0);
+
+ ggml_metal_encoder_dispatch_threadgroups(enc, (ne01 + nqptg - 1)/nqptg, ne02, ne03*nwg, 32, nsg, 1);
+ } else {
+ // sanity checks
+ GGML_ASSERT(ne01*ne02*ne03 == ne1*ne2*ne3);
+ GGML_ASSERT((uint64_t)ne1*ne2*ne3 <= (1u << 31));
+
+ ggml_metal_buffer_id bid_dst = ggml_metal_get_buffer_id(op);
+
+ // write the results from each workgroup into a temp buffer
+ ggml_metal_buffer_id bid_tmp = bid_dst;
+ bid_tmp.offs += ggml_nbytes(op);
+ ggml_metal_encoder_set_buffer(enc, bid_tmp, 6);
+
+ ggml_metal_encoder_set_threadgroup_memory_size(enc, smem, 0);
+ ggml_metal_encoder_dispatch_threadgroups(enc, (ne01 + nqptg - 1)/nqptg, ne02, ne03*nwg, 32, nsg, 1);
+
+ // sync the 2 kernels
+ ggml_metal_op_concurrency_reset(ctx);
+
+ // reduce the results from the workgroups
+ {
+ const int32_t nrows = ne1*ne2*ne3;
+
+ ggml_metal_kargs_flash_attn_ext_vec_reduce args0 = {
+ nrows,
+ };
+
+ ggml_metal_pipeline_t pipeline0 = ggml_metal_library_get_pipeline_flash_attn_ext_vec_reduce(lib, op, ne20, nwg);
+
+ ggml_metal_encoder_set_pipeline(enc, pipeline0);
+ ggml_metal_encoder_set_bytes (enc, &args0, sizeof(args0), 0);
+ ggml_metal_encoder_set_buffer (enc, bid_tmp, 1);
+ ggml_metal_encoder_set_buffer (enc, bid_dst, 2);
+
+ ggml_metal_encoder_dispatch_threadgroups(enc, nrows, 1, 1, 32*nwg, 1, 1);
+ }
+ }
+#undef FATTN_SMEM
+ }
+
+ return 1;
+}
+
+int ggml_metal_op_bin(ggml_metal_op_t ctx, int idx) {
+ ggml_cgraph * gf = ctx->gf;
+ ggml_tensor * op = ggml_graph_node(gf, idx);
+
+ ggml_tensor ** ops = ggml_graph_nodes(gf) + idx;
+
+ ggml_metal_library_t lib = ctx->lib;
+ ggml_metal_encoder_t enc = ctx->enc;
+
+ const int idx_end = ctx->idx_end;
+
+ const bool use_fusion = ctx->use_fusion;
+
+ const int debug_fusion = ctx->debug_fusion;
+
+ GGML_TENSOR_LOCALS( int32_t, ne0, op->src[0], ne);
+ GGML_TENSOR_LOCALS(uint64_t, nb0, op->src[0], nb);
+ GGML_TENSOR_LOCALS( int32_t, ne1, op->src[1], ne);
+ GGML_TENSOR_LOCALS(uint64_t, nb1, op->src[1], nb);
+ GGML_TENSOR_LOCALS( int32_t, ne, op, ne);
+ GGML_TENSOR_LOCALS(uint64_t, nb, op, nb);
+
+ GGML_ASSERT(op->src[0]->type == GGML_TYPE_F32);
+ GGML_ASSERT(op->src[1]->type == GGML_TYPE_F32);
+
+ GGML_ASSERT(ggml_is_contiguous_rows(op->src[0]));
+ GGML_ASSERT(ggml_is_contiguous_rows(op->src[1]));
+
+ bool bcast_row = false;
+
+ ggml_metal_buffer_id bid_src0 = ggml_metal_get_buffer_id(op->src[0]);
+ ggml_metal_buffer_id bid_src1 = ggml_metal_get_buffer_id(op->src[1]);
+ ggml_metal_buffer_id bid_dst = ggml_metal_get_buffer_id(op);
+
+ ggml_metal_kargs_bin args = {
+ /*.ne00 =*/ ne00,
+ /*.ne01 =*/ ne01,
+ /*.ne02 =*/ ne02,
+ /*.ne03 =*/ ne03,
+ /*.nb00 =*/ nb00,
+ /*.nb01 =*/ nb01,
+ /*.nb02 =*/ nb02,
+ /*.nb03 =*/ nb03,
+ /*.ne10 =*/ ne10,
+ /*.ne11 =*/ ne11,
+ /*.ne12 =*/ ne12,
+ /*.ne13 =*/ ne13,
+ /*.nb10 =*/ nb10,
+ /*.nb11 =*/ nb11,
+ /*.nb12 =*/ nb12,
+ /*.nb13 =*/ nb13,
+ /*.ne0 =*/ ne0,
+ /*.ne1 =*/ ne1,
+ /*.ne2 =*/ ne2,
+ /*.ne3 =*/ ne3,
+ /*.nb0 =*/ nb0,
+ /*.nb1 =*/ nb1,
+ /*.nb2 =*/ nb2,
+ /*.nb3 =*/ nb3,
+ /*.offs =*/ 0,
+ /*.o1 =*/ { bid_src1.offs },
+ };
+
+ ggml_op fops[8];
+
+ int n_fuse = 1;
+
+ // c[0] = add(a, b[0])
+ // c[1] = add(c[0], b[1])
+ // c[2] = add(c[1], b[2])
+ // ...
+ if (use_fusion) {
+ fops[0] = GGML_OP_ADD;
+ fops[1] = GGML_OP_ADD;
+ fops[2] = GGML_OP_ADD;
+ fops[3] = GGML_OP_ADD;
+ fops[4] = GGML_OP_ADD;
+ fops[5] = GGML_OP_ADD;
+ fops[6] = GGML_OP_ADD;
+ fops[7] = GGML_OP_ADD;
+
+ // note: in metal, we sometimes encode the graph in parallel so we have to avoid fusing ops
+ // across splits. idx_end indicates the last node in the current split
+ for (n_fuse = 0; n_fuse <= 6 && idx + n_fuse + 1 < idx_end; ++n_fuse) {
+ if (!ggml_can_fuse(gf, idx + n_fuse, fops + n_fuse, 2)) {
+ break;
+ }
+
+ if (ops[n_fuse] != ops[n_fuse + 1]->src[0]) {
+ break;
+ }
+
+ // b[0] === b[1] === ...
+ if (!ggml_are_same_layout(ops[n_fuse]->src[1], ops[n_fuse + 1]->src[1])) {
+ break;
+ }
+
+ // only fuse ops if src1 is in the same Metal buffer
+ ggml_metal_buffer_id bid_fuse = ggml_metal_get_buffer_id(ops[n_fuse + 1]->src[1]);
+ if (bid_fuse.metal != bid_src1.metal) {
+ break;
+ }
+
+ //ctx->fuse_cnt[ops[n_fuse + 1]->op]++;
+
+ args.o1[n_fuse + 1] = bid_fuse.offs;
+ }
+
+ ++n_fuse;
+
+ if (debug_fusion > 1 && n_fuse > 1) {
+ GGML_LOG_DEBUG("%s: fuse: ADD x %d\n", __func__, n_fuse);
+ }
+ }
+
+ // the offsets of src1 and all fused buffers are relative to the start of the src1 buffer
+ bid_src1.offs = 0;
+
+ ggml_metal_pipeline_t pipeline = nullptr;
+
+ if (ggml_nelements(op->src[1]) == ne10 && ggml_is_contiguous(op->src[1]) && ne00 % 4 == 0 && ne10 % 4 == 0) {
+ GGML_ASSERT(ggml_is_contiguous(op->src[0]));
+
+ // src1 is a row
+ GGML_ASSERT(ne11 == 1);
+
+ pipeline = ggml_metal_library_get_pipeline_bin(lib, op->op, n_fuse, true);
+
+ bcast_row = true;
+ } else {
+ pipeline = ggml_metal_library_get_pipeline_bin(lib, op->op, n_fuse, false);
+ }
+
+ if (n_fuse > 1) {
+ bid_dst = ggml_metal_get_buffer_id(ops[n_fuse - 1]);
+
+ for (int i = 1; i < n_fuse; ++i) {
+ if (!ggml_metal_op_concurrency_check(ctx, ops[i])) {
+ ggml_metal_op_concurrency_reset(ctx);
+
+ break;
+ }
+ }
+ }
+
+ ggml_metal_encoder_set_pipeline(enc, pipeline);
+ ggml_metal_encoder_set_bytes (enc, &args, sizeof(args), 0);
+ ggml_metal_encoder_set_buffer (enc, bid_src0, 1);
+ ggml_metal_encoder_set_buffer (enc, bid_src1, 2);
+ ggml_metal_encoder_set_buffer (enc, bid_dst, 3);
+
+ if (bcast_row) {
+ const int64_t n = ggml_nelements(op)/4;
+
+ ggml_metal_encoder_dispatch_threadgroups(enc, n, 1, 1, 1, 1, 1);
+ } else {
+ int nth = 32;
+
+ while (16*nth < ne0 && nth < ggml_metal_pipeline_max_theads_per_threadgroup(pipeline)) {
+ nth *= 2;
+ }
+
+ ggml_metal_encoder_dispatch_threadgroups(enc, ne01, ne02, ne03, nth, 1, 1);
+ }
+
+ return n_fuse;
+}
+
+int ggml_metal_op_rms_norm(ggml_metal_op_t ctx, int idx) {
+ ggml_cgraph * gf = ctx->gf;
+ ggml_tensor * op = ggml_graph_node(gf, idx);
+
+ ggml_metal_library_t lib = ctx->lib;
+ ggml_metal_encoder_t enc = ctx->enc;
+
+ const int idx_end = ctx->idx_end;
+
+ const bool use_fusion = ctx->use_fusion;
+
+ const int debug_fusion = ctx->debug_fusion;
+
+ ggml_tensor ** ops = ggml_graph_nodes(gf) + idx;
+
+ GGML_TENSOR_LOCALS( int32_t, ne0, op->src[0], ne);
+ GGML_TENSOR_LOCALS(uint64_t, nb0, op->src[0], nb);
+ GGML_TENSOR_LOCALS( int32_t, ne, op, ne);
+ GGML_TENSOR_LOCALS(uint32_t, nb, op, nb);
+
+ float eps;
+ memcpy(&eps, op->op_params, sizeof(float));
+
+ ggml_metal_buffer_id bid_src0 = ggml_metal_get_buffer_id(op->src[0]);
+ ggml_metal_buffer_id bid_dst = ggml_metal_get_buffer_id(op);
+
+ ggml_metal_kargs_rms_norm args = {
+ /*.ne00 =*/ ne00,
+ /*.ne00_4 =*/ ne00/4,
+ /*.nb1 =*/ nb1,
+ /*.nb2 =*/ nb2,
+ /*.nb3 =*/ nb3,
+ /*.eps =*/ eps,
+ /*.nef1 =*/ { ne01 },
+ /*.nef2 =*/ { ne02 },
+ /*.nef3 =*/ { ne03 },
+ /*.nbf1 =*/ { nb01 },
+ /*.nbf2 =*/ { nb02 },
+ /*.nbf3 =*/ { nb03 },
+ };
+
+ ggml_op fops[8];
+
+ int n_fuse = 1;
+
+ ggml_metal_buffer_id bid_fuse[2] = { bid_src0, bid_src0 };
+
+ // d[0] = rms_norm(a)
+ // d[1] = mul(d[0], b)
+ // d[2] = add(d[1], c)
+ if (use_fusion) {
+ fops[0] = GGML_OP_RMS_NORM;
+ fops[1] = GGML_OP_MUL;
+ fops[2] = GGML_OP_ADD;
+
+ for (n_fuse = 0; n_fuse <= 1 && idx + n_fuse + 1 < idx_end; ++n_fuse) {
+ if (!ggml_can_fuse(gf, idx + n_fuse, fops + n_fuse, 2)) {
+ break;
+ }
+
+ if (ops[n_fuse] != ops[n_fuse + 1]->src[0]) {
+ break;
+ }
+
+ if (ops[n_fuse + 1]->src[1]->ne[0] != op->ne[0]) {
+ break;
+ }
+
+ if (!ggml_is_contiguous_rows(ops[n_fuse + 1]->src[1])) {
+ break;
+ }
+
+ if (ops[n_fuse + 1]->type != GGML_TYPE_F32) {
+ break;
+ }
+
+ //ctx->fuse_cnt[ops[n_fuse + 1]->op]++;
+
+ bid_fuse[n_fuse] = ggml_metal_get_buffer_id(ops[n_fuse + 1]->src[1]);
+
+ args.nef1[n_fuse + 1] = ops[n_fuse + 1]->src[1]->ne[1];
+ args.nef2[n_fuse + 1] = ops[n_fuse + 1]->src[1]->ne[2];
+ args.nef3[n_fuse + 1] = ops[n_fuse + 1]->src[1]->ne[3];
+
+ args.nbf1[n_fuse + 1] = ops[n_fuse + 1]->src[1]->nb[1];
+ args.nbf2[n_fuse + 1] = ops[n_fuse + 1]->src[1]->nb[2];
+ args.nbf3[n_fuse + 1] = ops[n_fuse + 1]->src[1]->nb[3];
+ }
+
+ ++n_fuse;
+
+ if (debug_fusion > 1 && n_fuse > 1) {
+ if (n_fuse == 2) {
+ GGML_LOG_DEBUG("%s: fuse: RMS_NORM + MUL\n", __func__);
+ }
+ if (n_fuse == 3) {
+ GGML_LOG_DEBUG("%s: fuse: RMS_NORM + MUL + ADD\n", __func__);
+ }
+ }
+ }
+
+ if (n_fuse > 1) {
+ bid_dst = ggml_metal_get_buffer_id(ops[n_fuse - 1]);
+
+ for (int i = 1; i < n_fuse; ++i) {
+ if (!ggml_metal_op_concurrency_check(ctx, ops[i])) {
+ ggml_metal_op_concurrency_reset(ctx);
+
+ break;
+ }
+ }
+ }
+
+ ggml_metal_pipeline_t pipeline = ggml_metal_library_get_pipeline_rms_norm(lib, op, n_fuse);
+
+ int nth = 32; // SIMD width
+
+ while (nth < ne00/4 && nth < ggml_metal_pipeline_max_theads_per_threadgroup(pipeline)) {
+ nth *= 2;
+ }
+
+ nth = std::min(nth, ggml_metal_pipeline_max_theads_per_threadgroup(pipeline));
+ nth = std::min(nth, ne00/4);
+
+ const size_t smem = ggml_metal_pipeline_get_smem(pipeline);
+
+ ggml_metal_encoder_set_pipeline(enc, pipeline);
+ ggml_metal_encoder_set_bytes (enc, &args, sizeof(args), 0);
+ ggml_metal_encoder_set_buffer (enc, bid_src0, 1);
+ ggml_metal_encoder_set_buffer (enc, bid_fuse[0], 2);
+ ggml_metal_encoder_set_buffer (enc, bid_fuse[1], 3);
+ ggml_metal_encoder_set_buffer (enc, bid_dst, 4);
+
+ ggml_metal_encoder_set_threadgroup_memory_size(enc, smem, 0);
+
+ ggml_metal_encoder_dispatch_threadgroups(enc, ne01, ne02, ne03, nth, 1, 1);
+
+ return n_fuse;
+}
+
+int ggml_metal_op_l2_norm(ggml_metal_op_t ctx, int idx) {
+ ggml_cgraph * gf = ctx->gf;
+ ggml_tensor * op = ggml_graph_node(gf, idx);
+
+ ggml_metal_library_t lib = ctx->lib;
+ ggml_metal_encoder_t enc = ctx->enc;
+
+ GGML_TENSOR_LOCALS( int32_t, ne0, op->src[0], ne);
+ GGML_TENSOR_LOCALS(uint64_t, nb0, op->src[0], nb);
+ GGML_TENSOR_LOCALS( int32_t, ne, op, ne);
+ GGML_TENSOR_LOCALS(uint32_t, nb, op, nb);
+
+ float eps;
+ memcpy(&eps, op->op_params, sizeof(float));
+
+ int nth = 32; // SIMD width
+
+ ggml_metal_kargs_l2_norm args = {
+ /*.ne00 =*/ ne00,
+ /*.ne00_4 =*/ ne00/4,
+ /*.nb01 =*/ nb01,
+ /*.eps =*/ eps,
+ };
+
+ ggml_metal_pipeline_t pipeline = ggml_metal_library_get_pipeline_l2_norm(lib, op);
+
+ while (nth < ne00/4 && nth < ggml_metal_pipeline_max_theads_per_threadgroup(pipeline)) {
+ nth *= 2;
+ }
+
+ nth = std::min(nth, ggml_metal_pipeline_max_theads_per_threadgroup(pipeline));
+ nth = std::min(nth, ne00/4);
+
+ const size_t smem = ggml_metal_pipeline_get_smem(pipeline);
+
+ const int64_t nrows = ggml_nrows(op->src[0]);
+
+ ggml_metal_encoder_set_pipeline(enc, pipeline);
+ ggml_metal_encoder_set_bytes (enc, &args, sizeof(args), 0);
+ ggml_metal_encoder_set_buffer (enc, ggml_metal_get_buffer_id(op->src[0]), 1);
+ ggml_metal_encoder_set_buffer (enc, ggml_metal_get_buffer_id(op), 2);
+
+ ggml_metal_encoder_set_threadgroup_memory_size(enc, smem, 0);
+
+ ggml_metal_encoder_dispatch_threadgroups(enc, nrows, 1, 1, nth, 1, 1);
+
+ return 1;
+}
+
+int ggml_metal_op_group_norm(ggml_metal_op_t ctx, int idx) {
+ ggml_cgraph * gf = ctx->gf;
+ ggml_tensor * op = ggml_graph_node(gf, idx);
+
+ ggml_metal_library_t lib = ctx->lib;
+ ggml_metal_encoder_t enc = ctx->enc;
+
+ GGML_TENSOR_LOCALS( int32_t, ne0, op->src[0], ne);
+ GGML_TENSOR_LOCALS(uint64_t, nb0, op->src[0], nb);
+ GGML_TENSOR_LOCALS( int32_t, ne, op, ne);
+ GGML_TENSOR_LOCALS(uint32_t, nb, op, nb);
+
+ const int32_t ngrp = ((const int32_t *) op->op_params)[0];
+
+ float eps;
+ memcpy(&eps, op->op_params + 1, sizeof(float));
+
+ ggml_metal_kargs_group_norm args = {
+ /*.ne00 =*/ ne00,
+ /*.ne01 =*/ ne01,
+ /*.ne02 =*/ ne02,
+ /*.nb00 =*/ nb00,
+ /*.nb01 =*/ nb01,
+ /*.nb02 =*/ nb02,
+ /*.ngrp =*/ ngrp,
+ /*.eps =*/ eps,
+ };
+
+ ggml_metal_pipeline_t pipeline = ggml_metal_library_get_pipeline_group_norm(lib, op);
+
+ int nth = 32; // SIMD width
+ //while (nth < ne00/4 && nth < ggml_metal_pipeline_max_theads_per_threadgroup(pipeline)) {
+ // nth *= 2;
+ //}
+
+ //nth = std::min(nth, ggml_metal_pipeline_max_theads_per_threadgroup(pipeline));
+ //nth = std::min(nth, ne00/4);
+
+ const size_t smem = ggml_metal_pipeline_get_smem(pipeline);
+
+ ggml_metal_encoder_set_pipeline(enc, pipeline);
+ ggml_metal_encoder_set_bytes (enc, &args, sizeof(args), 0);
+ ggml_metal_encoder_set_buffer (enc, ggml_metal_get_buffer_id(op->src[0]), 1);
+ ggml_metal_encoder_set_buffer (enc, ggml_metal_get_buffer_id(op), 2);
+
+ ggml_metal_encoder_set_threadgroup_memory_size(enc, smem, 0);
+
+ ggml_metal_encoder_dispatch_threadgroups(enc, ngrp, 1, 1, nth, 1, 1);
+
+ return 1;
+}
+
+int ggml_metal_op_norm(ggml_metal_op_t ctx, int idx) {
+ ggml_cgraph * gf = ctx->gf;
+ ggml_tensor * op = ggml_graph_node(gf, idx);
+
+ ggml_metal_library_t lib = ctx->lib;
+ ggml_metal_encoder_t enc = ctx->enc;
+
+ GGML_TENSOR_LOCALS( int32_t, ne0, op->src[0], ne);
+ GGML_TENSOR_LOCALS(uint64_t, nb0, op->src[0], nb);
+ GGML_TENSOR_LOCALS( int32_t, ne, op, ne);
+ GGML_TENSOR_LOCALS(uint32_t, nb, op, nb);
+
+ float eps;
+ memcpy(&eps, op->op_params, sizeof(float));
+
+ ggml_metal_kargs_norm args = {
+ /*.ne00 =*/ ne00,
+ /*.ne00_4 =*/ ne00/4,
+ /*.nb01 =*/ nb01,
+ /*.eps =*/ eps,
+ };
+
+ ggml_metal_pipeline_t pipeline = ggml_metal_library_get_pipeline_norm(lib, op);
+
+ int nth = 32; // SIMD width
+ while (nth < ne00/4 && nth < ggml_metal_pipeline_max_theads_per_threadgroup(pipeline)) {
+ nth *= 2;
+ }
+
+ nth = std::min(nth, ggml_metal_pipeline_max_theads_per_threadgroup(pipeline));
+ nth = std::min(nth, ne00/4);
+
+ const size_t smem = ggml_metal_pipeline_get_smem(pipeline);
+
+ const int64_t nrows = ggml_nrows(op->src[0]);
+
+ ggml_metal_encoder_set_pipeline(enc, pipeline);
+ ggml_metal_encoder_set_bytes (enc, &args, sizeof(args), 0);
+ ggml_metal_encoder_set_buffer (enc, ggml_metal_get_buffer_id(op->src[0]), 1);
+ ggml_metal_encoder_set_buffer (enc, ggml_metal_get_buffer_id(op), 2);
+
+ ggml_metal_encoder_set_threadgroup_memory_size(enc, smem, 0);
+
+ ggml_metal_encoder_dispatch_threadgroups(enc, nrows, 1, 1, nth, 1, 1);
+
+ return 1;
+}
+
+int ggml_metal_op_rope(ggml_metal_op_t ctx, int idx) {
+ ggml_cgraph * gf = ctx->gf;
+ ggml_tensor * op = ggml_graph_node(gf, idx);
+
+ ggml_metal_library_t lib = ctx->lib;
+ ggml_metal_encoder_t enc = ctx->enc;
+
+ GGML_TENSOR_LOCALS( int32_t, ne0, op->src[0], ne);
+ GGML_TENSOR_LOCALS(uint64_t, nb0, op->src[0], nb);
+ GGML_TENSOR_LOCALS( int32_t, ne1, op->src[1], ne);
+ GGML_TENSOR_LOCALS(uint64_t, nb1, op->src[1], nb);
+ GGML_TENSOR_LOCALS( int32_t, ne, op, ne);
+ GGML_TENSOR_LOCALS(uint32_t, nb, op, nb);
+
+ // make sure we have one or more position id(ne10) per token(ne02)
+ GGML_ASSERT(ne10 % ne02 == 0);
+ GGML_ASSERT(ne10 >= ne02);
+
+ const int nth = std::min(1024, ne00);
+
+ const int n_past = ((const int32_t *) op->op_params)[0];
+ const int n_dims = ((const int32_t *) op->op_params)[1];
+ //const int mode = ((const int32_t *) op->op_params)[2];
+ // skip 3, n_ctx, used in GLM RoPE, unimplemented in metal
+ const int n_ctx_orig = ((const int32_t *) op->op_params)[4];
+
+ float freq_base;
+ float freq_scale;
+ float ext_factor;
+ float attn_factor;
+ float beta_fast;
+ float beta_slow;
+
+ memcpy(&freq_base, (const int32_t *) op->op_params + 5, sizeof(float));
+ memcpy(&freq_scale, (const int32_t *) op->op_params + 6, sizeof(float));
+ memcpy(&ext_factor, (const int32_t *) op->op_params + 7, sizeof(float));
+ memcpy(&attn_factor, (const int32_t *) op->op_params + 8, sizeof(float));
+ memcpy(&beta_fast, (const int32_t *) op->op_params + 9, sizeof(float));
+ memcpy(&beta_slow, (const int32_t *) op->op_params + 10, sizeof(float));
+
+ // mrope
+ const int sect_0 = ((const int32_t *) op->op_params)[11];
+ const int sect_1 = ((const int32_t *) op->op_params)[12];
+ const int sect_2 = ((const int32_t *) op->op_params)[13];
+ const int sect_3 = ((const int32_t *) op->op_params)[14];
+
+ ggml_metal_kargs_rope args = {
+ /*.ne00 =*/ ne00,
+ /*.ne01 =*/ ne01,
+ /*.ne02 =*/ ne02,
+ /*.ne03 =*/ ne03,
+ /*.nb00 =*/ nb00,
+ /*.nb01 =*/ nb01,
+ /*.nb02 =*/ nb02,
+ /*.nb03 =*/ nb03,
+ /*.ne0 =*/ ne0,
+ /*.ne1 =*/ ne1,
+ /*.ne2 =*/ ne2,
+ /*.ne3 =*/ ne3,
+ /*.nb0 =*/ nb0,
+ /*.nb1 =*/ nb1,
+ /*.nb2 =*/ nb2,
+ /*.nb3 =*/ nb3,
+ /*.n_past =*/ n_past,
+ /*.n_dims =*/ n_dims,
+ /*.n_ctx_orig =*/ n_ctx_orig,
+ /*.freq_base =*/ freq_base,
+ /*.freq_scale =*/ freq_scale,
+ /*.ext_factor =*/ ext_factor,
+ /*.attn_factor =*/ attn_factor,
+ /*.beta_fast =*/ beta_fast,
+ /*.beta_slow =*/ beta_slow,
+ /* sect_0 =*/ sect_0,
+ /* sect_1 =*/ sect_1,
+ /* sect_2 =*/ sect_2,
+ /* sect_3 =*/ sect_3,
+ };
+
+ ggml_metal_pipeline_t pipeline = ggml_metal_library_get_pipeline_rope(lib, op);
+
+ ggml_metal_encoder_set_pipeline(enc, pipeline);
+ ggml_metal_encoder_set_bytes (enc, &args, sizeof(args), 0);
+ ggml_metal_encoder_set_buffer (enc, ggml_metal_get_buffer_id(op->src[0]), 1);
+ ggml_metal_encoder_set_buffer (enc, ggml_metal_get_buffer_id(op->src[1]), 2);
+ if (op->src[2]) {
+ ggml_metal_encoder_set_buffer (enc, ggml_metal_get_buffer_id(op->src[2]), 3);
+ } else {
+ ggml_metal_encoder_set_buffer (enc, ggml_metal_get_buffer_id(op->src[0]), 3);
+ }
+ ggml_metal_encoder_set_buffer (enc, ggml_metal_get_buffer_id(op), 4);
+
+ ggml_metal_encoder_dispatch_threadgroups(enc, ne01, ne02, ne03, nth, 1, 1);
+
+ return 1;
+}
+
+int ggml_metal_op_im2col(ggml_metal_op_t ctx, int idx) {
+ ggml_cgraph * gf = ctx->gf;
+ ggml_tensor * op = ggml_graph_node(gf, idx);
+
+ ggml_metal_library_t lib = ctx->lib;
+ ggml_metal_encoder_t enc = ctx->enc;
+
+ GGML_TENSOR_LOCALS( int32_t, ne0, op->src[0], ne);
+ GGML_TENSOR_LOCALS(uint64_t, nb0, op->src[0], nb);
+ GGML_TENSOR_LOCALS( int32_t, ne, op, ne);
+ GGML_TENSOR_LOCALS(uint32_t, nb, op, nb);
+
+ const int32_t s0 = ((const int32_t *)(op->op_params))[0];
+ const int32_t s1 = ((const int32_t *)(op->op_params))[1];
+ const int32_t p0 = ((const int32_t *)(op->op_params))[2];
+ const int32_t p1 = ((const int32_t *)(op->op_params))[3];
+ const int32_t d0 = ((const int32_t *)(op->op_params))[4];
+ const int32_t d1 = ((const int32_t *)(op->op_params))[5];
+
+ const bool is_2D = ((const int32_t *)(op->op_params))[6] == 1;
+
+ const int32_t N = op->src[1]->ne[is_2D ? 3 : 2];
+ const int32_t IC = op->src[1]->ne[is_2D ? 2 : 1];
+ const int32_t IH = is_2D ? op->src[1]->ne[1] : 1;
+ const int32_t IW = op->src[1]->ne[0];
+
+ const int32_t KH = is_2D ? op->src[0]->ne[1] : 1;
+ const int32_t KW = op->src[0]->ne[0];
+
+ const int32_t OH = is_2D ? op->ne[2] : 1;
+ const int32_t OW = op->ne[1];
+
+ const int32_t CHW = IC * KH * KW;
+
+ const uint64_t ofs0 = op->src[1]->nb[is_2D ? 3 : 2] / 4;
+ const uint64_t ofs1 = op->src[1]->nb[is_2D ? 2 : 1] / 4;
+
+
+ ggml_metal_kargs_im2col args = {
+ /*.ofs0 =*/ ofs0,
+ /*.ofs1 =*/ ofs1,
+ /*.IW =*/ IW,
+ /*.IH =*/ IH,
+ /*.CHW =*/ CHW,
+ /*.s0 =*/ s0,
+ /*.s1 =*/ s1,
+ /*.p0 =*/ p0,
+ /*.p1 =*/ p1,
+ /*.d0 =*/ d0,
+ /*.d1 =*/ d1,
+ /*.N =*/ N,
+ /*.KH =*/ KH,
+ /*.KW =*/ KW,
+ /*.KHW =*/ KH * KW,
+ };
+
+ ggml_metal_pipeline_t pipeline = ggml_metal_library_get_pipeline_im2col(lib, op);
+
+ const uint64_t n_threads = std::min(ggml_metal_pipeline_max_theads_per_threadgroup(pipeline), N);
+ const int64_t quotient = N / n_threads + (N % n_threads > 0 ? 1 : 0);
+
+ ggml_metal_encoder_set_pipeline(enc, pipeline);
+ ggml_metal_encoder_set_bytes (enc, &args, sizeof(args), 0);
+ ggml_metal_encoder_set_buffer (enc, ggml_metal_get_buffer_id(op->src[1]), 1);
+ ggml_metal_encoder_set_buffer (enc, ggml_metal_get_buffer_id(op), 2);
+
+ ggml_metal_encoder_dispatch_threadgroups(enc, quotient * CHW, OH, OW, n_threads, 1, 1);
+
+ return 1;
+}
+
+int ggml_metal_op_conv_transpose_1d(ggml_metal_op_t ctx, int idx) {
+ ggml_cgraph * gf = ctx->gf;
+ ggml_tensor * op = ggml_graph_node(gf, idx);
+
+ ggml_metal_library_t lib = ctx->lib;
+ ggml_metal_encoder_t enc = ctx->enc;
+
+ GGML_TENSOR_LOCALS( int32_t, ne0, op->src[0], ne);
+ GGML_TENSOR_LOCALS(uint64_t, nb0, op->src[0], nb);
+ GGML_TENSOR_LOCALS( int32_t, ne1, op->src[1], ne);
+ GGML_TENSOR_LOCALS(uint64_t, nb1, op->src[1], nb);
+ GGML_TENSOR_LOCALS( int32_t, ne, op, ne);
+ GGML_TENSOR_LOCALS(uint32_t, nb, op, nb);
+
+ const int32_t s0 = ((const int32_t *)(op->op_params))[0];
+
+ const int32_t IC = op->src[1]->ne[1];
+ const int32_t IL = op->src[1]->ne[0];
+
+ const int32_t K = op->src[0]->ne[0];
+
+ const int32_t OL = op->ne[0];
+ const int32_t OC = op->ne[1];
+
+ ggml_metal_kargs_conv_transpose_1d args = {
+ /*.IC =*/ IC,
+ /*.IL =*/ IL,
+ /*.K =*/ K,
+ /*.s0 =*/ s0,
+ /*.nb0 =*/ nb0,
+ /*.nb1 =*/ nb1,
+ };
+
+ ggml_metal_pipeline_t pipeline = ggml_metal_library_get_pipeline_conv_transpose_1d(lib, op);
+
+ ggml_metal_encoder_set_pipeline(enc, pipeline);
+ ggml_metal_encoder_set_bytes (enc, &args, sizeof(args), 0);
+ ggml_metal_encoder_set_buffer (enc, ggml_metal_get_buffer_id(op->src[0]), 1);
+ ggml_metal_encoder_set_buffer (enc, ggml_metal_get_buffer_id(op->src[1]), 2);
+ ggml_metal_encoder_set_buffer (enc, ggml_metal_get_buffer_id(op), 3);
+
+ ggml_metal_encoder_dispatch_threadgroups(enc, OL, OC, 1, 1, 1, 1);
+
+ return 1;
+}
+
+int ggml_metal_op_upscale(ggml_metal_op_t ctx, int idx) {
+ ggml_cgraph * gf = ctx->gf;
+ ggml_tensor * op = ggml_graph_node(gf, idx);
+
+ ggml_metal_library_t lib = ctx->lib;
+ ggml_metal_encoder_t enc = ctx->enc;
+
+ GGML_TENSOR_LOCALS( int32_t, ne0, op->src[0], ne);
+ GGML_TENSOR_LOCALS(uint64_t, nb0, op->src[0], nb);
+ GGML_TENSOR_LOCALS( int32_t, ne, op, ne);
+ GGML_TENSOR_LOCALS(uint32_t, nb, op, nb);
+
+ const float sf0 = (float)ne0/op->src[0]->ne[0];
+ const float sf1 = (float)ne1/op->src[0]->ne[1];
+ const float sf2 = (float)ne2/op->src[0]->ne[2];
+ const float sf3 = (float)ne3/op->src[0]->ne[3];
+
+ ggml_metal_kargs_upscale args = {
+ /*.ne00 =*/ ne00,
+ /*.ne01 =*/ ne01,
+ /*.ne02 =*/ ne02,
+ /*.ne03 =*/ ne03,
+ /*.nb00 =*/ nb00,
+ /*.nb01 =*/ nb01,
+ /*.nb02 =*/ nb02,
+ /*.nb03 =*/ nb03,
+ /*.ne0 =*/ ne0,
+ /*.ne1 =*/ ne1,
+ /*.ne2 =*/ ne2,
+ /*.ne3 =*/ ne3,
+ /*.nb0 =*/ nb0,
+ /*.nb1 =*/ nb1,
+ /*.nb2 =*/ nb2,
+ /*.nb3 =*/ nb3,
+ /*.sf0 =*/ sf0,
+ /*.sf1 =*/ sf1,
+ /*.sf2 =*/ sf2,
+ /*.sf3 =*/ sf3
+ };
+
+ ggml_metal_pipeline_t pipeline = ggml_metal_library_get_pipeline_upscale(lib, op);
+
+ const int nth = std::min(ggml_metal_pipeline_max_theads_per_threadgroup(pipeline), ne0);
+
+ ggml_metal_encoder_set_pipeline(enc, pipeline);
+ ggml_metal_encoder_set_bytes (enc, &args, sizeof(args), 0);
+ ggml_metal_encoder_set_buffer (enc, ggml_metal_get_buffer_id(op->src[0]), 1);
+ ggml_metal_encoder_set_buffer (enc, ggml_metal_get_buffer_id(op), 2);
+
+ ggml_metal_encoder_dispatch_threadgroups(enc, ne1, ne2, ne3, nth, 1, 1);
+
+ return 1;
+}
+
+int ggml_metal_op_pad(ggml_metal_op_t ctx, int idx) {
+ ggml_cgraph * gf = ctx->gf;
+ ggml_tensor * op = ggml_graph_node(gf, idx);
+
+ ggml_metal_library_t lib = ctx->lib;
+ ggml_metal_encoder_t enc = ctx->enc;
+
+ GGML_TENSOR_LOCALS( int32_t, ne0, op->src[0], ne);
+ GGML_TENSOR_LOCALS(uint64_t, nb0, op->src[0], nb);
+ GGML_TENSOR_LOCALS( int32_t, ne, op, ne);
+ GGML_TENSOR_LOCALS(uint32_t, nb, op, nb);
+
+ ggml_metal_kargs_pad args = {
+ /*.ne00 =*/ ne00,
+ /*.ne01 =*/ ne01,
+ /*.ne02 =*/ ne02,
+ /*.ne03 =*/ ne03,
+ /*.nb00 =*/ nb00,
+ /*.nb01 =*/ nb01,
+ /*.nb02 =*/ nb02,
+ /*.nb03 =*/ nb03,
+ /*.ne0 =*/ ne0,
+ /*.ne1 =*/ ne1,
+ /*.ne2 =*/ ne2,
+ /*.ne3 =*/ ne3,
+ /*.nb0 =*/ nb0,
+ /*.nb1 =*/ nb1,
+ /*.nb2 =*/ nb2,
+ /*.nb3 =*/ nb3
+ };
+
+ ggml_metal_pipeline_t pipeline = ggml_metal_library_get_pipeline_pad(lib, op);
+
+ const int nth = std::min(1024, ne0);
+
+ ggml_metal_encoder_set_pipeline(enc, pipeline);
+ ggml_metal_encoder_set_bytes (enc, &args, sizeof(args), 0);
+ ggml_metal_encoder_set_buffer (enc, ggml_metal_get_buffer_id(op->src[0]), 1);
+ ggml_metal_encoder_set_buffer (enc, ggml_metal_get_buffer_id(op), 2);
+
+ ggml_metal_encoder_dispatch_threadgroups(enc, ne1, ne2, ne3, nth, 1, 1);
+
+ return 1;
+}
+
+int ggml_metal_op_pad_reflect_1d(ggml_metal_op_t ctx, int idx) {
+ ggml_cgraph * gf = ctx->gf;
+ ggml_tensor * op = ggml_graph_node(gf, idx);
+
+ ggml_metal_library_t lib = ctx->lib;
+ ggml_metal_encoder_t enc = ctx->enc;
+
+ GGML_TENSOR_LOCALS( int32_t, ne0, op->src[0], ne);
+ GGML_TENSOR_LOCALS(uint64_t, nb0, op->src[0], nb);
+ GGML_TENSOR_LOCALS( int32_t, ne, op, ne);
+ GGML_TENSOR_LOCALS(uint32_t, nb, op, nb);
+
+ ggml_metal_kargs_pad_reflect_1d args = {
+ /*.ne00 =*/ ne00,
+ /*.ne01 =*/ ne01,
+ /*.ne02 =*/ ne02,
+ /*.ne03 =*/ ne03,
+ /*.nb00 =*/ nb00,
+ /*.nb01 =*/ nb01,
+ /*.nb02 =*/ nb02,
+ /*.nb03 =*/ nb03,
+ /*.ne0 =*/ ne0,
+ /*.ne1 =*/ ne1,
+ /*.ne2 =*/ ne2,
+ /*.ne3 =*/ ne3,
+ /*.nb0 =*/ nb0,
+ /*.nb1 =*/ nb1,
+ /*.nb2 =*/ nb2,
+ /*.nb3 =*/ nb3,
+ /*.p0 =*/ ((const int32_t *)(op->op_params))[0],
+ /*.p1 =*/ ((const int32_t *)(op->op_params))[1]
+ };
+
+ ggml_metal_pipeline_t pipeline = ggml_metal_library_get_pipeline_pad_reflect_1d(lib, op);
+
+ const int nth = std::min(1024, ne0);
+
+ ggml_metal_encoder_set_pipeline(enc, pipeline);
+ ggml_metal_encoder_set_bytes (enc, &args, sizeof(args), 0);
+ ggml_metal_encoder_set_buffer (enc, ggml_metal_get_buffer_id(op->src[0]), 1);
+ ggml_metal_encoder_set_buffer (enc, ggml_metal_get_buffer_id(op), 2);
+
+ ggml_metal_encoder_dispatch_threadgroups(enc, ne1, ne2, ne3, nth, 1, 1);
+
+ return 1;
+}
+
+int ggml_metal_op_arange(ggml_metal_op_t ctx, int idx) {
+ ggml_cgraph * gf = ctx->gf;
+ ggml_tensor * op = ggml_graph_node(gf, idx);
+
+ ggml_metal_library_t lib = ctx->lib;
+ ggml_metal_encoder_t enc = ctx->enc;
+
+ GGML_TENSOR_LOCALS( int32_t, ne, op, ne);
+ GGML_TENSOR_LOCALS(uint32_t, nb, op, nb);
+
+ float start;
+ float step;
+
+ memcpy(&start, ((const int32_t *) op->op_params) + 0, sizeof(float));
+ memcpy(&step, ((const int32_t *) op->op_params) + 2, sizeof(float));
+
+ ggml_metal_kargs_arange args = {
+ /*.ne0 =*/ ne0,
+ /*.start =*/ start,
+ /*.step =*/ step
+ };
+
+ const int nth = std::min(1024, ne0);
+
+ ggml_metal_pipeline_t pipeline = ggml_metal_library_get_pipeline_arange(lib, op);
+
+ //[encoder setComputePipelineState:pipeline];
+ //[encoder setBuffer:id_dst offset:offs_dst atIndex:0];
+ //[encoder setBytes:&args length:sizeof(args) atIndex:1];
+
+ //[encoder dispatchThreadgroups:MTLSizeMake(1, 1, 1) threadsPerThreadgroup:MTLSizeMake(nth, 1, 1)];
+
+ ggml_metal_encoder_set_pipeline(enc, pipeline);
+ ggml_metal_encoder_set_bytes (enc, &args, sizeof(args), 0);
+ ggml_metal_encoder_set_buffer (enc, ggml_metal_get_buffer_id(op), 1);
+
+ ggml_metal_encoder_dispatch_threadgroups(enc, 1, 1, 1, nth, 1, 1);
+
+ return 1;
+}
+
+int ggml_metal_op_timestep_embedding(ggml_metal_op_t ctx, int idx) {
+ ggml_cgraph * gf = ctx->gf;
+ ggml_tensor * op = ggml_graph_node(gf, idx);
+
+ ggml_metal_library_t lib = ctx->lib;
+ ggml_metal_encoder_t enc = ctx->enc;
+
+ GGML_TENSOR_LOCALS( int32_t, ne0, op->src[0], ne);
+ GGML_TENSOR_LOCALS(uint64_t, nb0, op->src[0], nb);
+ GGML_TENSOR_LOCALS( int32_t, ne, op, ne);
+ GGML_TENSOR_LOCALS(uint32_t, nb, op, nb);
+
+ const int dim = op->op_params[0];
+ const int max_period = op->op_params[1];
+
+ ggml_metal_kargs_timestep_embedding args = {
+ /*.nb1 =*/ nb1,
+ /*.dim =*/ dim,
+ /*.max_period =*/ max_period,
+ };
+
+ ggml_metal_pipeline_t pipeline = ggml_metal_library_get_pipeline_timestep_embedding(lib, op);
+
+ const int nth = std::max(1, std::min(1024, dim/2));
+
+ ggml_metal_encoder_set_pipeline(enc, pipeline);
+ ggml_metal_encoder_set_bytes (enc, &args, sizeof(args), 0);
+ ggml_metal_encoder_set_buffer (enc, ggml_metal_get_buffer_id(op->src[0]), 1);
+ ggml_metal_encoder_set_buffer (enc, ggml_metal_get_buffer_id(op), 2);
+
+ ggml_metal_encoder_dispatch_threadgroups(enc, ne00, 1, 1, nth, 1, 1);
+
+ return 1;
+}
+
+int ggml_metal_op_argmax(ggml_metal_op_t ctx, int idx) {
+ ggml_cgraph * gf = ctx->gf;
+ ggml_tensor * op = ggml_graph_node(gf, idx);
+
+ ggml_metal_library_t lib = ctx->lib;
+ ggml_metal_encoder_t enc = ctx->enc;
+
+ GGML_TENSOR_LOCALS( int32_t, ne0, op->src[0], ne);
+ GGML_TENSOR_LOCALS(uint64_t, nb0, op->src[0], nb);
+ GGML_TENSOR_LOCALS( int32_t, ne, op, ne);
+ GGML_TENSOR_LOCALS(uint32_t, nb, op, nb);
+
+ ggml_metal_kargs_argmax args = {
+ /*.ne00 = */ ne00,
+ /*.nb01 = */ nb01,
+ };
+
+ ggml_metal_pipeline_t pipeline = ggml_metal_library_get_pipeline_argmax(lib, op);
+
+ const int64_t nrows = ggml_nrows(op->src[0]);
+
+ int nth = 32; // SIMD width
+ while (nth < ne00 && nth*ne01*ne02*ne03 < 256) {
+ nth *= 2;
+ }
+
+ const size_t smem = ggml_metal_pipeline_get_smem(pipeline);
+
+ ggml_metal_encoder_set_pipeline(enc, pipeline);
+ ggml_metal_encoder_set_bytes (enc, &args, sizeof(args), 0);
+ ggml_metal_encoder_set_buffer (enc, ggml_metal_get_buffer_id(op->src[0]), 1);
+ ggml_metal_encoder_set_buffer (enc, ggml_metal_get_buffer_id(op), 2);
+
+ ggml_metal_encoder_set_threadgroup_memory_size(enc, smem, 0);
+
+ ggml_metal_encoder_dispatch_threadgroups(enc, nrows, 1, 1, nth, 1, 1);
+
+ return 1;
+}
+
+int ggml_metal_op_argsort(ggml_metal_op_t ctx, int idx) {
+ ggml_cgraph * gf = ctx->gf;
+ ggml_tensor * op = ggml_graph_node(gf, idx);
+
+ ggml_metal_library_t lib = ctx->lib;
+ ggml_metal_encoder_t enc = ctx->enc;
+
+ GGML_TENSOR_LOCALS( int32_t, ne0, op->src[0], ne);
+ GGML_TENSOR_LOCALS(uint64_t, nb0, op->src[0], nb);
+ GGML_TENSOR_LOCALS( int32_t, ne, op, ne);
+ GGML_TENSOR_LOCALS(uint32_t, nb, op, nb);
+
+ // bitonic sort requires the number of elements to be power of 2
+ int64_t ne00_padded = 1;
+ while (ne00_padded < ne00) {
+ ne00_padded *= 2;
+ }
+
+ ggml_metal_pipeline_t pipeline = ggml_metal_library_get_pipeline_argsort(lib, op);
+
+ const int64_t nrows = ggml_nrows(op->src[0]);
+
+ // Metal kernels require the buffer size to be multiple of 16 bytes
+ // https://developer.apple.com/documentation/metal/mtlcomputecommandencoder/1443142-setthreadgroupmemorylength
+ const size_t smem = GGML_PAD(ne00_padded*sizeof(int32_t), 16);
+
+ ggml_metal_kargs_argsort args = {
+ /*.ncols =*/ ne00,
+ /*.ncols_pad =*/ ne00_padded
+ };
+
+ ggml_metal_encoder_set_pipeline(enc, pipeline);
+ ggml_metal_encoder_set_bytes (enc, &args, sizeof(args), 0);
+ ggml_metal_encoder_set_buffer (enc, ggml_metal_get_buffer_id(op->src[0]), 1);
+ ggml_metal_encoder_set_buffer (enc, ggml_metal_get_buffer_id(op), 2);
+
+ ggml_metal_encoder_set_threadgroup_memory_size(enc, smem, 0);
+
+ ggml_metal_encoder_dispatch_threadgroups(enc, 1, nrows, 1, ne00_padded, 1, 1);
+
+ return 1;
+}
+
+int ggml_metal_op_leaky_relu(ggml_metal_op_t ctx, int idx) {
+ ggml_cgraph * gf = ctx->gf;
+ ggml_tensor * op = ggml_graph_node(gf, idx);
+
+ ggml_metal_library_t lib = ctx->lib;
+ ggml_metal_encoder_t enc = ctx->enc;
+
+ GGML_TENSOR_LOCALS( int32_t, ne0, op->src[0], ne);
+ GGML_TENSOR_LOCALS(uint64_t, nb0, op->src[0], nb);
+ GGML_TENSOR_LOCALS( int32_t, ne, op, ne);
+ GGML_TENSOR_LOCALS(uint32_t, nb, op, nb);
+
+ float slope;
+ memcpy(&slope, op->op_params, sizeof(float));
+
+ ggml_metal_kargs_leaky_relu args = {
+ /*.slope =*/ slope
+ };
+
+ ggml_metal_pipeline_t pipeline = ggml_metal_library_get_pipeline_unary(lib, op);
+
+ int64_t n = ggml_nelements(op);
+
+ if (n % 4 == 0) {
+ n /= 4;
+ }
+
+ ggml_metal_encoder_set_pipeline(enc, pipeline);
+ ggml_metal_encoder_set_bytes (enc, &args, sizeof(args), 0);
+ ggml_metal_encoder_set_buffer (enc, ggml_metal_get_buffer_id(op->src[0]), 1);
+ ggml_metal_encoder_set_buffer (enc, ggml_metal_get_buffer_id(op), 2);
+
+ ggml_metal_encoder_dispatch_threadgroups(enc, n, 1, 1, 1, 1, 1);
+
+ return 1;
+}
--- /dev/null
+#pragma once
+
+#include "ggml-metal-device.h"
+
+#ifdef __cplusplus
+extern "C" {
+#endif
+
+typedef struct ggml_metal_op * ggml_metal_op_t;
+
+ggml_metal_op_t ggml_metal_op_init(
+ ggml_metal_device_t dev,
+ ggml_metal_cmd_buf_t cmd_buf,
+ struct ggml_cgraph * gf,
+ int idx_start,
+ int idx_end,
+ bool use_fusion,
+ bool use_concurrency,
+ bool use_capture,
+ int debug_graph,
+ int debug_fusion);
+
+void ggml_metal_op_free(ggml_metal_op_t ctx);
+
+int ggml_metal_op_encode(ggml_metal_op_t ctx, int idx);
+
+//
+// available ops:
+//
+
+// tokens per expert
+size_t ggml_metal_op_mul_mat_id_extra_tpe(const struct ggml_tensor * op);
+
+// id map [n_tokens, n_expert]
+size_t ggml_metal_op_mul_mat_id_extra_ids(const struct ggml_tensor * op);
+
+// return true if we should use the FA vector kernel for this op
+bool ggml_metal_op_flash_attn_ext_use_vec(const struct ggml_tensor * op);
+
+size_t ggml_metal_op_flash_attn_ext_extra_tmp(const struct ggml_tensor * op);
+
+int ggml_metal_op_concat (ggml_metal_op_t ctx, int idx);
+int ggml_metal_op_repeat (ggml_metal_op_t ctx, int idx);
+int ggml_metal_op_acc (ggml_metal_op_t ctx, int idx);
+int ggml_metal_op_scale (ggml_metal_op_t ctx, int idx);
+int ggml_metal_op_clamp (ggml_metal_op_t ctx, int idx);
+int ggml_metal_op_unary (ggml_metal_op_t ctx, int idx);
+int ggml_metal_op_glu (ggml_metal_op_t ctx, int idx);
+int ggml_metal_op_sum_rows (ggml_metal_op_t ctx, int idx);
+int ggml_metal_op_get_rows (ggml_metal_op_t ctx, int idx);
+int ggml_metal_op_set_rows (ggml_metal_op_t ctx, int idx);
+int ggml_metal_op_soft_max (ggml_metal_op_t ctx, int idx);
+int ggml_metal_op_ssm_conv (ggml_metal_op_t ctx, int idx);
+int ggml_metal_op_ssm_scan (ggml_metal_op_t ctx, int idx);
+int ggml_metal_op_rwkv (ggml_metal_op_t ctx, int idx);
+int ggml_metal_op_cpy (ggml_metal_op_t ctx, int idx);
+int ggml_metal_op_pool_2d (ggml_metal_op_t ctx, int idx);
+int ggml_metal_op_mul_mat (ggml_metal_op_t ctx, int idx);
+int ggml_metal_op_mul_mat_id (ggml_metal_op_t ctx, int idx);
+int ggml_metal_op_add_id (ggml_metal_op_t ctx, int idx);
+int ggml_metal_op_flash_attn_ext (ggml_metal_op_t ctx, int idx);
+int ggml_metal_op_bin (ggml_metal_op_t ctx, int idx);
+int ggml_metal_op_rms_norm (ggml_metal_op_t ctx, int idx);
+int ggml_metal_op_l2_norm (ggml_metal_op_t ctx, int idx);
+int ggml_metal_op_group_norm (ggml_metal_op_t ctx, int idx);
+int ggml_metal_op_norm (ggml_metal_op_t ctx, int idx);
+int ggml_metal_op_rope (ggml_metal_op_t ctx, int idx);
+int ggml_metal_op_im2col (ggml_metal_op_t ctx, int idx);
+int ggml_metal_op_conv_transpose_1d (ggml_metal_op_t ctx, int idx);
+int ggml_metal_op_upscale (ggml_metal_op_t ctx, int idx);
+int ggml_metal_op_pad (ggml_metal_op_t ctx, int idx);
+int ggml_metal_op_pad_reflect_1d (ggml_metal_op_t ctx, int idx);
+int ggml_metal_op_arange (ggml_metal_op_t ctx, int idx);
+int ggml_metal_op_timestep_embedding(ggml_metal_op_t ctx, int idx);
+int ggml_metal_op_argmax (ggml_metal_op_t ctx, int idx);
+int ggml_metal_op_argsort (ggml_metal_op_t ctx, int idx);
+int ggml_metal_op_leaky_relu (ggml_metal_op_t ctx, int idx);
+
+#ifdef __cplusplus
+}
+#endif
--- /dev/null
+#include "ggml-metal.h"
+
+#include "ggml-impl.h"
+#include "ggml-backend-impl.h"
+
+#include "ggml-metal-device.h"
+#include "ggml-metal-context.h"
+#include "ggml-metal-ops.h"
+
+// globals
+
+// initialized in ggml_backend_metal_reg
+static ggml_backend_reg g_ggml_metal_reg;
+static ggml_backend_device g_ggml_metal_device;
+
+////////////////////////////////////////////////////////////////////////////////
+// backend interface
+////////////////////////////////////////////////////////////////////////////////
+
+// shared buffer
+
+static void ggml_backend_metal_buffer_shared_free_buffer(ggml_backend_buffer_t buffer) {
+ ggml_metal_buffer_t ctx = (ggml_metal_buffer_t)buffer->context;
+
+ GGML_ASSERT(ggml_metal_buffer_is_shared(ctx));
+
+ ggml_metal_buffer_free(ctx);
+}
+
+static void * ggml_backend_metal_buffer_shared_get_base(ggml_backend_buffer_t buffer) {
+ ggml_metal_buffer_t ctx = (ggml_metal_buffer_t)buffer->context;
+
+ GGML_ASSERT(ggml_metal_buffer_is_shared(ctx));
+
+ return ggml_metal_buffer_get_base(ctx);
+}
+
+static void ggml_backend_metal_buffer_shared_memset_tensor(ggml_backend_buffer_t buffer, ggml_tensor * tensor, uint8_t value, size_t offset, size_t size) {
+ ggml_metal_buffer_t ctx = (ggml_metal_buffer_t)buffer->context;
+
+ GGML_ASSERT(ggml_metal_buffer_is_shared(ctx));
+
+ ggml_metal_buffer_memset_tensor(ctx, tensor, value, offset, size);
+}
+
+static void ggml_backend_metal_buffer_shared_set_tensor(ggml_backend_buffer_t buffer, ggml_tensor * tensor, const void * data, size_t offset, size_t size) {
+ ggml_metal_buffer_t ctx = (ggml_metal_buffer_t)buffer->context;
+
+ GGML_ASSERT(ggml_metal_buffer_is_shared(ctx));
+
+ ggml_metal_buffer_set_tensor(ctx, tensor, data, offset, size);
+}
+
+static void ggml_backend_metal_buffer_shared_get_tensor(ggml_backend_buffer_t buffer, const ggml_tensor * tensor, void * data, size_t offset, size_t size) {
+ ggml_metal_buffer_t ctx = (ggml_metal_buffer_t)buffer->context;
+
+ GGML_ASSERT(ggml_metal_buffer_is_shared(ctx));
+
+ ggml_metal_buffer_get_tensor(ctx, tensor, data, offset, size);
+}
+
+static bool ggml_backend_metal_buffer_shared_cpy_tensor(ggml_backend_buffer_t buffer, const ggml_tensor * src, ggml_tensor * dst) {
+ ggml_metal_buffer_t ctx = (ggml_metal_buffer_t)buffer->context;
+
+ GGML_ASSERT(ggml_metal_buffer_is_shared(ctx));
+
+ GGML_UNUSED(buffer);
+ GGML_UNUSED(src);
+ GGML_UNUSED(dst);
+
+ return false;
+}
+
+static void ggml_backend_metal_buffer_shared_clear(ggml_backend_buffer_t buffer, uint8_t value) {
+ ggml_metal_buffer_t ctx = (ggml_metal_buffer_t)buffer->context;
+
+ GGML_ASSERT(ggml_metal_buffer_is_shared(ctx));
+
+ ggml_metal_buffer_clear(ctx, value);
+}
+
+static ggml_backend_buffer_i ggml_backend_metal_buffer_shared_i = {
+ /* .free_buffer = */ ggml_backend_metal_buffer_shared_free_buffer,
+ /* .get_base = */ ggml_backend_metal_buffer_shared_get_base,
+ /* .init_tensor = */ NULL,
+ /* .memset_tensor = */ ggml_backend_metal_buffer_shared_memset_tensor,
+ /* .set_tensor = */ ggml_backend_metal_buffer_shared_set_tensor,
+ /* .get_tensor = */ ggml_backend_metal_buffer_shared_get_tensor,
+ /* .cpy_tensor = */ ggml_backend_metal_buffer_shared_cpy_tensor,
+ /* .clear = */ ggml_backend_metal_buffer_shared_clear,
+ /* .reset = */ NULL,
+};
+
+// private buffer
+
+static void ggml_backend_metal_buffer_private_free_buffer(ggml_backend_buffer_t buffer) {
+ ggml_metal_buffer_t ctx = (ggml_metal_buffer_t)buffer->context;
+
+ GGML_ASSERT(!ggml_metal_buffer_is_shared(ctx));
+
+ ggml_metal_buffer_free(ctx);
+}
+
+static void * ggml_backend_metal_buffer_private_get_base(ggml_backend_buffer_t buffer) {
+ ggml_metal_buffer_t ctx = (ggml_metal_buffer_t)buffer->context;
+
+ GGML_ASSERT(!ggml_metal_buffer_is_shared(ctx));
+
+ return ggml_metal_buffer_get_base(ctx);
+}
+
+static void ggml_backend_metal_buffer_private_memset_tensor(ggml_backend_buffer_t buffer, ggml_tensor * tensor, uint8_t value, size_t offset, size_t size) {
+ ggml_metal_buffer_t ctx = (ggml_metal_buffer_t)buffer->context;
+
+ GGML_ASSERT(!ggml_metal_buffer_is_shared(ctx));
+
+ ggml_metal_buffer_memset_tensor(ctx, tensor, value, offset, size);
+}
+
+static void ggml_backend_metal_buffer_private_set_tensor(ggml_backend_buffer_t buffer, ggml_tensor * tensor, const void * data, size_t offset, size_t size) {
+ ggml_metal_buffer_t ctx = (ggml_metal_buffer_t)buffer->context;
+
+ GGML_ASSERT(!ggml_metal_buffer_is_shared(ctx));
+
+ ggml_metal_buffer_set_tensor(ctx, tensor, data, offset, size);
+}
+
+static void ggml_backend_metal_buffer_private_get_tensor(ggml_backend_buffer_t buffer, const ggml_tensor * tensor, void * data, size_t offset, size_t size) {
+ ggml_metal_buffer_t ctx = (ggml_metal_buffer_t)buffer->context;
+
+ GGML_ASSERT(!ggml_metal_buffer_is_shared(ctx));
+
+ ggml_metal_buffer_get_tensor(ctx, tensor, data, offset, size);
+}
+
+static bool ggml_backend_metal_buffer_private_cpy_tensor(ggml_backend_buffer_t buffer, const ggml_tensor * src, ggml_tensor * dst) {
+ ggml_metal_buffer_t ctx = (ggml_metal_buffer_t)buffer->context;
+
+ GGML_ASSERT(!ggml_metal_buffer_is_shared(ctx));
+
+ GGML_UNUSED(buffer);
+ GGML_UNUSED(src);
+ GGML_UNUSED(dst);
+
+ return false;
+}
+
+static void ggml_backend_metal_buffer_private_clear(ggml_backend_buffer_t buffer, uint8_t value) {
+ ggml_metal_buffer_t ctx = (ggml_metal_buffer_t)buffer->context;
+
+ GGML_ASSERT(!ggml_metal_buffer_is_shared(ctx));
+
+ ggml_metal_buffer_clear(ctx, value);
+}
+
+static ggml_backend_buffer_i ggml_backend_metal_buffer_private_i = {
+ /* .free_buffer = */ ggml_backend_metal_buffer_private_free_buffer,
+ /* .get_base = */ ggml_backend_metal_buffer_private_get_base,
+ /* .init_tensor = */ NULL,
+ /* .memset_tensor = */ ggml_backend_metal_buffer_private_memset_tensor,
+ /* .set_tensor = */ ggml_backend_metal_buffer_private_set_tensor,
+ /* .get_tensor = */ ggml_backend_metal_buffer_private_get_tensor,
+ /* .cpy_tensor = */ ggml_backend_metal_buffer_private_cpy_tensor,
+ /* .clear = */ ggml_backend_metal_buffer_private_clear,
+ /* .reset = */ NULL,
+};
+
+//
+// buffer types
+//
+
+// common method for allocating shread or private Metal buffers
+static ggml_backend_buffer_t ggml_backend_metal_buffer_type_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size, bool shared) {
+ ggml_metal_device_t ctx_dev = (ggml_metal_device_t)buft->device->context;
+ ggml_metal_buffer_t res = ggml_metal_buffer_init(ctx_dev, size, shared);
+
+ ggml_backend_buffer_i buf_i = ggml_metal_buffer_is_shared(res)
+ ? ggml_backend_metal_buffer_shared_i
+ : ggml_backend_metal_buffer_private_i;
+
+ return ggml_backend_buffer_init(buft, buf_i, res, size);
+}
+
+static size_t ggml_backend_metal_buffer_type_get_alloc_size(ggml_backend_buffer_type_t buft, const ggml_tensor * tensor) {
+ size_t res = ggml_nbytes(tensor);
+
+ // some operations require additional memory for fleeting data:
+ switch (tensor->op) {
+ case GGML_OP_MUL_MAT_ID:
+ {
+ res += ggml_metal_op_mul_mat_id_extra_tpe(tensor);
+ res += ggml_metal_op_mul_mat_id_extra_ids(tensor);
+ } break;
+ case GGML_OP_FLASH_ATTN_EXT:
+ {
+ if (ggml_metal_op_flash_attn_ext_use_vec(tensor)) {
+ res += ggml_metal_op_flash_attn_ext_extra_tmp(tensor);
+ }
+ } break;
+ default:
+ break;
+ }
+
+ return res;
+
+ GGML_UNUSED(buft);
+}
+
+// default (shared) buffer type
+
+static const char * ggml_backend_metal_buffer_type_shared_get_name(ggml_backend_buffer_type_t buft) {
+ return "Metal";
+
+ GGML_UNUSED(buft);
+}
+
+static ggml_backend_buffer_t ggml_backend_metal_buffer_type_shared_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size) {
+ return ggml_backend_metal_buffer_type_alloc_buffer(buft, size, true);
+}
+
+static size_t ggml_backend_metal_buffer_type_shared_get_alignment(ggml_backend_buffer_type_t buft) {
+ return 32;
+
+ GGML_UNUSED(buft);
+}
+
+static size_t ggml_backend_metal_buffer_type_shared_get_max_size(ggml_backend_buffer_type_t buft) {
+ ggml_metal_device_t ctx_dev = (ggml_metal_device_t)buft->device->context;
+
+ return ggml_metal_device_get_props(ctx_dev)->max_buffer_size;
+}
+
+static size_t ggml_backend_metal_buffer_type_shared_get_alloc_size(ggml_backend_buffer_type_t buft, const ggml_tensor * tensor) {
+ return ggml_backend_metal_buffer_type_get_alloc_size(buft, tensor);
+}
+
+static bool ggml_backend_metal_buffer_type_shared_is_host(ggml_backend_buffer_type_t buft) {
+ return false;
+
+ GGML_UNUSED(buft);
+}
+
+static ggml_backend_buffer_type_t ggml_backend_metal_buffer_type_shared(void) {
+ static ggml_backend_buffer_type ggml_backend_buffer_type_metal = {
+ /* .iface = */ {
+ /* .get_name = */ ggml_backend_metal_buffer_type_shared_get_name,
+ /* .alloc_buffer = */ ggml_backend_metal_buffer_type_shared_alloc_buffer,
+ /* .get_alignment = */ ggml_backend_metal_buffer_type_shared_get_alignment,
+ /* .get_max_size = */ ggml_backend_metal_buffer_type_shared_get_max_size,
+ /* .get_alloc_size = */ ggml_backend_metal_buffer_type_shared_get_alloc_size,
+ /* .is_host = */ ggml_backend_metal_buffer_type_shared_is_host,
+ },
+ /* .device = */ &g_ggml_metal_device,
+ /* .context = */ NULL,
+ };
+
+ return &ggml_backend_buffer_type_metal;
+}
+
+// default (private) buffer type
+
+static const char * ggml_backend_metal_buffer_type_private_get_name(ggml_backend_buffer_type_t buft) {
+ return "Metal_Private";
+
+ GGML_UNUSED(buft);
+}
+
+static ggml_backend_buffer_t ggml_backend_metal_buffer_type_private_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size) {
+ return ggml_backend_metal_buffer_type_alloc_buffer(buft, size, false);
+}
+
+static size_t ggml_backend_metal_buffer_type_private_get_alignment(ggml_backend_buffer_type_t buft) {
+ return 32;
+
+ GGML_UNUSED(buft);
+}
+
+static size_t ggml_backend_metal_buffer_type_private_get_max_size(ggml_backend_buffer_type_t buft) {
+ ggml_metal_device_t ctx_dev = (ggml_metal_device_t)buft->device->context;
+
+ return ggml_metal_device_get_props(ctx_dev)->max_buffer_size;
+}
+
+static size_t ggml_backend_metal_buffer_type_private_get_alloc_size(ggml_backend_buffer_type_t buft, const ggml_tensor * tensor) {
+ return ggml_backend_metal_buffer_type_get_alloc_size(buft, tensor);
+}
+
+static bool ggml_backend_metal_buffer_type_private_is_host(ggml_backend_buffer_type_t buft) {
+ return false;
+
+ GGML_UNUSED(buft);
+}
+
+static ggml_backend_buffer_type_t ggml_backend_metal_buffer_type_private(void) {
+ static ggml_backend_buffer_type ggml_backend_buffer_type_metal = {
+ /* .iface = */ {
+ /* .get_name = */ ggml_backend_metal_buffer_type_private_get_name,
+ /* .alloc_buffer = */ ggml_backend_metal_buffer_type_private_alloc_buffer,
+ /* .get_alignment = */ ggml_backend_metal_buffer_type_private_get_alignment,
+ /* .get_max_size = */ ggml_backend_metal_buffer_type_private_get_max_size,
+ /* .get_alloc_size = */ ggml_backend_metal_buffer_type_private_get_alloc_size,
+ /* .is_host = */ ggml_backend_metal_buffer_type_private_is_host,
+ },
+ /* .device = */ &g_ggml_metal_device,
+ /* .context = */ NULL,
+ };
+
+ return &ggml_backend_buffer_type_metal;
+}
+
+// mapped buffer type
+
+static const char * ggml_backend_metal_buffer_type_mapped_get_name(ggml_backend_buffer_type_t buft) {
+ return "Metal_Mapped";
+
+ GGML_UNUSED(buft);
+}
+
+static ggml_backend_buffer_t ggml_backend_metal_buffer_type_mapped_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size) {
+ // for mapped buffers, prefer shared memory
+ return ggml_backend_metal_buffer_type_alloc_buffer(buft, size, true);
+}
+
+static size_t ggml_backend_metal_buffer_type_mapped_get_alignment(ggml_backend_buffer_type_t buft) {
+ return 32;
+
+ GGML_UNUSED(buft);
+}
+
+static size_t ggml_backend_metal_buffer_type_mapped_get_max_size(ggml_backend_buffer_type_t buft) {
+ ggml_metal_device_t ctx_dev = (ggml_metal_device_t)buft->device->context;
+
+ return ggml_metal_device_get_props(ctx_dev)->max_buffer_size;
+}
+
+static size_t ggml_backend_metal_buffer_type_mapped_get_alloc_size(ggml_backend_buffer_type_t buft, const ggml_tensor * tensor) {
+ return ggml_backend_metal_buffer_type_get_alloc_size(buft, tensor);
+}
+
+static bool ggml_backend_metal_buffer_type_mapped_is_host(ggml_backend_buffer_type_t buft) {
+ return false;
+
+ GGML_UNUSED(buft);
+}
+
+static ggml_backend_buffer_type_t ggml_backend_metal_buffer_type_mapped(void) {
+ // note: not obvious, but this buffer type still needs to implement .alloc_buffer:
+ // https://github.com/ggml-org/llama.cpp/pull/15832#discussion_r2333177099
+ static ggml_backend_buffer_type ggml_backend_buffer_type_mapped_metal = {
+ /* .iface = */ {
+ /* .get_name = */ ggml_backend_metal_buffer_type_mapped_get_name,
+ /* .alloc_buffer = */ ggml_backend_metal_buffer_type_mapped_alloc_buffer,
+ /* .get_alignment = */ ggml_backend_metal_buffer_type_mapped_get_alignment,
+ /* .get_max_size = */ ggml_backend_metal_buffer_type_mapped_get_max_size,
+ /* .get_alloc_size = */ ggml_backend_metal_buffer_type_mapped_get_alloc_size,
+ /* .is_host = */ ggml_backend_metal_buffer_type_mapped_is_host,
+ },
+ /* .device = */ &g_ggml_metal_device,
+ /* .context = */ NULL,
+ };
+
+ return &ggml_backend_buffer_type_mapped_metal;
+}
+
+// backend
+
+static const char * ggml_backend_metal_name(ggml_backend_t backend) {
+ return "Metal";
+
+ GGML_UNUSED(backend);
+}
+
+static void ggml_backend_metal_free(ggml_backend_t backend) {
+ ggml_metal_t ctx = (ggml_metal_t)backend->context;
+
+ // wait for any ongoing async operations to finish
+ ggml_metal_synchronize(ctx);
+
+ ggml_metal_free(ctx);
+
+ free(backend);
+}
+
+static void ggml_backend_metal_synchronize(ggml_backend_t backend) {
+ ggml_metal_t ctx = (ggml_metal_t)backend->context;
+
+ ggml_metal_synchronize(ctx);
+}
+
+static void ggml_backend_metal_set_tensor_async(ggml_backend_t backend, ggml_tensor * tensor, const void * data, size_t offset, size_t size) {
+ ggml_metal_t ctx = (ggml_metal_t)backend->context;
+
+ ggml_metal_set_tensor_async(ctx, tensor, data, offset, size);
+}
+
+static void ggml_backend_metal_get_tensor_async(ggml_backend_t backend, const ggml_tensor * tensor, void * data, size_t offset, size_t size) {
+ ggml_metal_t ctx = (ggml_metal_t)backend->context;
+
+ ggml_metal_get_tensor_async(ctx, tensor, data, offset, size);
+}
+
+static bool ggml_backend_metal_cpy_tensor_async(ggml_backend_t backend_src, ggml_backend_t backend_dst, const ggml_tensor * src, ggml_tensor * dst) {
+ return false;
+
+ GGML_UNUSED(backend_src);
+ GGML_UNUSED(backend_dst);
+ GGML_UNUSED(src);
+ GGML_UNUSED(dst);
+}
+
+static enum ggml_status ggml_backend_metal_graph_compute(ggml_backend_t backend, ggml_cgraph * cgraph) {
+ ggml_metal_t ctx = (ggml_metal_t)backend->context;
+
+ return ggml_metal_graph_compute(ctx, cgraph);
+}
+
+static void ggml_backend_metal_graph_optimize(ggml_backend_t backend, ggml_cgraph * cgraph) {
+ ggml_metal_t ctx = (ggml_metal_t)backend->context;
+
+ ggml_metal_graph_optimize(ctx, cgraph);
+}
+
+static void ggml_backend_metal_set_n_cb(ggml_backend_t backend, int n_cb) {
+ GGML_ASSERT(ggml_backend_is_metal(backend));
+
+ ggml_metal_t ctx = (ggml_metal_t)backend->context;
+
+ ggml_metal_set_n_cb(ctx, n_cb);
+
+}
+
+static ggml_backend_i ggml_backend_metal_i = {
+ /* .get_name = */ ggml_backend_metal_name,
+ /* .free = */ ggml_backend_metal_free,
+ /* .set_tensor_async = */ ggml_backend_metal_set_tensor_async,
+ /* .get_tensor_async = */ ggml_backend_metal_get_tensor_async,
+ /* .cpy_tensor_async = */ ggml_backend_metal_cpy_tensor_async, // only needed for multi-GPU setups
+ /* .synchronize = */ ggml_backend_metal_synchronize,
+ /* .graph_plan_create = */ NULL,
+ /* .graph_plan_free = */ NULL,
+ /* .graph_plan_update = */ NULL,
+ /* .graph_plan_compute = */ NULL,
+ /* .graph_compute = */ ggml_backend_metal_graph_compute,
+
+ // the events API is needed only for multi-GPU setups, so likely no need to implement it for Metal
+ // in any case, these docs seem relevant if we ever decide to implement it:
+ // https://developer.apple.com/documentation/metal/mtlcommandbuffer#Synchronizing-Passes-with-Events
+ /* .event_record = */ NULL,
+ /* .event_wait = */ NULL,
+ /* .optimize_graph = */ ggml_backend_metal_graph_optimize,
+};
+
+static ggml_guid_t ggml_backend_metal_guid(void) {
+ static ggml_guid guid = { 0x81, 0xa1, 0x8b, 0x1e, 0x71, 0xec, 0x79, 0xed, 0x2b, 0x85, 0xdc, 0x8a, 0x61, 0x98, 0x30, 0xe6 };
+ return &guid;
+}
+
+ggml_backend_t ggml_backend_metal_init(void) {
+ ggml_backend_dev_t dev = ggml_backend_reg_dev_get(ggml_backend_metal_reg(), 0);
+ ggml_metal_device_t ctx_dev = (ggml_metal_device_t)dev->context;
+
+ ggml_metal_t ctx = ggml_metal_init(ctx_dev);
+ if (ctx == NULL) {
+ GGML_LOG_ERROR("%s: error: failed to allocate context\n", __func__);
+ return NULL;
+ }
+
+ ggml_backend_t backend = (ggml_backend_t) malloc(sizeof(ggml_backend));
+
+ *backend = {
+ /* .guid = */ ggml_backend_metal_guid(),
+ /* .interface = */ ggml_backend_metal_i,
+ /* .device = */ dev,
+ /* .context = */ ctx,
+ };
+
+ ggml_backend_metal_set_n_cb(backend, 1);
+
+ return backend;
+}
+
+bool ggml_backend_is_metal(ggml_backend_t backend) {
+ return backend != NULL && ggml_guid_matches(backend->guid, ggml_backend_metal_guid());
+}
+
+void ggml_backend_metal_set_abort_callback(ggml_backend_t backend, ggml_abort_callback abort_callback, void * user_data) {
+ GGML_ASSERT(ggml_backend_is_metal(backend));
+
+ ggml_metal_t ctx = (ggml_metal_t)backend->context;
+
+ ggml_metal_set_abort_callback(ctx, abort_callback, user_data);
+}
+
+bool ggml_backend_metal_supports_family(ggml_backend_t backend, int family) {
+ GGML_ASSERT(ggml_backend_is_metal(backend));
+
+ ggml_metal_t ctx = (ggml_metal_t)backend->context;
+
+ return ggml_metal_supports_family(ctx, family);
+}
+
+void ggml_backend_metal_capture_next_compute(ggml_backend_t backend) {
+ GGML_ASSERT(ggml_backend_is_metal(backend));
+
+ ggml_metal_t ctx = (ggml_metal_t)backend->context;
+
+ ggml_metal_capture_next_compute(ctx);
+}
+
+// backend device
+
+static const char * ggml_backend_metal_device_get_name(ggml_backend_dev_t dev) {
+ return "Metal";
+
+ GGML_UNUSED(dev);
+}
+
+static const char * ggml_backend_metal_device_get_description(ggml_backend_dev_t dev) {
+ ggml_metal_device_t ctx_dev = (ggml_metal_device_t)dev->context;
+
+ return ggml_metal_device_get_props(ctx_dev)->name;
+}
+
+static void ggml_backend_metal_device_get_memory(ggml_backend_dev_t dev, size_t * free, size_t * total) {
+ ggml_metal_device_t ctx_dev = (ggml_metal_device_t)dev->context;
+
+ ggml_metal_device_get_memory(ctx_dev, free, total);
+}
+
+static enum ggml_backend_dev_type ggml_backend_metal_device_get_type(ggml_backend_dev_t dev) {
+ return GGML_BACKEND_DEVICE_TYPE_GPU;
+
+ GGML_UNUSED(dev);
+}
+
+static void ggml_backend_metal_device_get_props(ggml_backend_dev_t dev, ggml_backend_dev_props * props) {
+ props->name = ggml_backend_metal_device_get_name(dev);
+ props->description = ggml_backend_metal_device_get_description(dev);
+ props->type = ggml_backend_metal_device_get_type(dev);
+
+ ggml_backend_metal_device_get_memory(dev, &props->memory_free, &props->memory_total);
+
+ props->caps = {
+ /* .async = */ true,
+ /* .host_buffer = */ false,
+ /* .buffer_from_host_ptr = */ true,
+ /* .events = */ false,
+ };
+}
+
+static ggml_backend_t ggml_backend_metal_device_init(ggml_backend_dev_t dev, const char * params) {
+ ggml_metal_device_t ctx_dev = (ggml_metal_device_t)dev->context;
+
+ ggml_metal_t ctx = ggml_metal_init(ctx_dev);
+ if (ctx == NULL) {
+ GGML_LOG_ERROR("%s: error: failed to allocate context\n", __func__);
+ return NULL;
+ }
+
+ ggml_backend_t backend = (ggml_backend_t) malloc(sizeof(ggml_backend));
+
+ *backend = {
+ /* .guid = */ ggml_backend_metal_guid(),
+ /* .interface = */ ggml_backend_metal_i,
+ /* .device = */ dev,
+ /* .context = */ ctx,
+ };
+
+ ggml_backend_metal_set_n_cb(backend, 1);
+
+ return backend;
+
+ GGML_UNUSED(params);
+}
+
+static ggml_backend_buffer_type_t ggml_backend_metal_device_get_buffer_type(ggml_backend_dev_t dev) {
+ ggml_metal_device_t ctx_dev = (ggml_metal_device_t)dev->context;
+
+ const ggml_metal_device_props * props_dev = ggml_metal_device_get_props(ctx_dev);
+
+ return props_dev->use_shared_buffers ? ggml_backend_metal_buffer_type_shared() : ggml_backend_metal_buffer_type_private();
+}
+
+static ggml_backend_buffer_t ggml_backend_metal_device_buffer_mapped(ggml_backend_dev_t dev, void * ptr, size_t size, size_t max_tensor_size) {
+ ggml_metal_device_t ctx_dev = (ggml_metal_device_t)dev->context;
+
+ ggml_metal_buffer_t res = ggml_metal_buffer_map(ctx_dev, ptr, size, max_tensor_size);
+
+ return ggml_backend_buffer_init(ggml_backend_metal_buffer_type_mapped(), ggml_backend_metal_buffer_shared_i, res, size);
+}
+
+static bool ggml_backend_metal_device_supports_op(ggml_backend_dev_t dev, const ggml_tensor * op) {
+ ggml_metal_device_t ctx_dev = (ggml_metal_device_t)dev->context;
+
+ return ggml_metal_device_supports_op(ctx_dev, op);
+}
+
+static bool ggml_backend_metal_device_supports_buft(ggml_backend_dev_t dev, ggml_backend_buffer_type_t buft) {
+ return
+ buft->iface.get_name == ggml_backend_metal_buffer_type_shared_get_name ||
+ buft->iface.get_name == ggml_backend_metal_buffer_type_private_get_name ||
+ buft->iface.get_name == ggml_backend_metal_buffer_type_mapped_get_name;
+
+ GGML_UNUSED(dev);
+}
+
+static int64_t get_op_batch_size(const ggml_tensor * op) {
+ switch (op->op) {
+ case GGML_OP_MUL_MAT:
+ return op->ne[1];
+ case GGML_OP_MUL_MAT_ID:
+ return op->ne[2];
+ default:
+ return ggml_nrows(op);
+ }
+}
+
+static bool ggml_backend_metal_device_offload_op(ggml_backend_dev_t dev, const ggml_tensor * op) {
+ const int min_batch_size = 32;
+
+ return (op->op == GGML_OP_MUL_MAT ||
+ op->op == GGML_OP_MUL_MAT_ID) &&
+ get_op_batch_size(op) >= min_batch_size;
+
+ GGML_UNUSED(dev);
+ GGML_UNUSED(op);
+}
+
+static ggml_backend_device_i ggml_backend_metal_device_i = {
+ /* .get_name = */ ggml_backend_metal_device_get_name,
+ /* .get_description = */ ggml_backend_metal_device_get_description,
+ /* .get_memory = */ ggml_backend_metal_device_get_memory,
+ /* .get_type = */ ggml_backend_metal_device_get_type,
+ /* .get_props = */ ggml_backend_metal_device_get_props,
+ /* .init_backend = */ ggml_backend_metal_device_init,
+ /* .get_buffer_type = */ ggml_backend_metal_device_get_buffer_type,
+ /* .get_host_buffer_type = */ NULL,
+ /* .buffer_from_host_ptr = */ ggml_backend_metal_device_buffer_mapped,
+ /* .supports_op = */ ggml_backend_metal_device_supports_op,
+ /* .supports_buft = */ ggml_backend_metal_device_supports_buft,
+ /* .offload_op = */ ggml_backend_metal_device_offload_op,
+ /* .event_new = */ NULL,
+ /* .event_free = */ NULL,
+ /* .event_synchronize = */ NULL,
+};
+
+// backend registry
+
+static const char * ggml_backend_metal_reg_get_name(ggml_backend_reg_t reg) {
+ return "Metal";
+
+ GGML_UNUSED(reg);
+}
+
+static size_t ggml_backend_metal_reg_device_count(ggml_backend_reg_t reg) {
+ return 1;
+
+ GGML_UNUSED(reg);
+}
+
+static ggml_backend_dev_t ggml_backend_metal_reg_device_get(ggml_backend_reg_t reg, size_t index) {
+ GGML_ASSERT(index == 0);
+
+ return &g_ggml_metal_device;
+
+ GGML_UNUSED(reg);
+ GGML_UNUSED(index);
+}
+
+static ggml_backend_feature g_ggml_backend_metal_features[] = {
+#if defined(GGML_METAL_EMBED_LIBRARY)
+ { "EMBED_LIBRARY", "1" },
+#endif
+ { NULL, NULL },
+};
+
+static ggml_backend_feature * ggml_backend_metal_get_features(ggml_backend_reg_t reg) {
+ return g_ggml_backend_metal_features;
+
+ GGML_UNUSED(reg);
+}
+
+static void * ggml_backend_metal_get_proc_address(ggml_backend_reg_t reg, const char * name) {
+ if (strcmp(name, "ggml_backend_get_features") == 0) {
+ return (void *)ggml_backend_metal_get_features;
+ }
+
+ return NULL;
+
+ GGML_UNUSED(reg);
+}
+
+static ggml_backend_reg_i ggml_backend_metal_reg_i = {
+ /* .get_name = */ ggml_backend_metal_reg_get_name,
+ /* .device_count = */ ggml_backend_metal_reg_device_count,
+ /* .device_get = */ ggml_backend_metal_reg_device_get,
+ /* .get_proc_address = */ ggml_backend_metal_get_proc_address,
+};
+
+ggml_backend_reg_t ggml_backend_metal_reg(void) {
+ {
+ g_ggml_metal_reg = {
+ /* .api_version = */ GGML_BACKEND_API_VERSION,
+ /* .iface = */ ggml_backend_metal_reg_i,
+ /* .context = */ NULL,
+ };
+
+ g_ggml_metal_device = {
+ /* .iface = */ ggml_backend_metal_device_i,
+ /* .reg = */ &g_ggml_metal_reg,
+ /* .context = */ ggml_metal_device_get(),
+ };
+ }
+
+ return &g_ggml_metal_reg;
+}
+
+GGML_BACKEND_DL_IMPL(ggml_backend_metal_reg)
+++ /dev/null
-#import "ggml-metal.h"
-
-#import "ggml-impl.h"
-#import "ggml-backend-impl.h"
-#import "ggml-metal-impl.h"
-#import "ggml-metal-common.h"
-
-#import <Foundation/Foundation.h>
-
-#import <Metal/Metal.h>
-
-#undef MIN
-#undef MAX
-#define MIN(a, b) ((a) < (b) ? (a) : (b))
-#define MAX(a, b) ((a) > (b) ? (a) : (b))
-
-// max memory buffers that can be mapped to the device
-#define GGML_METAL_MAX_BUFFERS 64
-
-// max number of MTLCommandBuffer used to submit a graph for processing
-#define GGML_METAL_MAX_COMMAND_BUFFERS 8
-
-#ifndef TARGET_OS_VISION
-#define TARGET_OS_VISION 0
-#endif
-
-// create residency sets only on macOS >= 15.0
-#if !TARGET_CPU_X86_64 && TARGET_OS_OSX && __MAC_OS_X_VERSION_MAX_ALLOWED >= 150000 || \
- TARGET_OS_IOS && __IPHONE_OS_VERSION_MAX_ALLOWED >= 180000 || \
- TARGET_OS_TV && __TV_OS_VERSION_MAX_ALLOWED >= 180000 || \
- TARGET_OS_VISION && __VISION_OS_VERSION_MAX_ALLOWED >= 200000
-#define GGML_METAL_HAS_RESIDENCY_SETS 1
-#endif
-
-// globals
-
-// overload of MTLGPUFamilyMetal3 (not available in some environments)
-static const NSInteger MTLGPUFamilyMetal3_GGML = 5001;
-
-// initialized in ggml_backend_metal_reg
-static struct ggml_backend_reg g_ggml_backend_metal_reg;
-static struct ggml_backend_device g_ggml_backend_metal_device;
-
-// information about a Metal device
-// note: assumes single GPU device - the default one
-// TODO: support multiple GPU devices
-static struct ggml_backend_metal_device_context {
- id<MTLDevice> mtl_device;
- int mtl_device_ref_count;
- id<MTLLibrary> mtl_library;
-
- // a single global queue shared by all Metal backends
- // technically not needed for devices with unified memory, but enables discrete GPUs support
- // ref: https://github.com/ggml-org/llama.cpp/pull/15906
- id<MTLCommandQueue> mtl_queue;
-
- NSLock * mtl_lock;
-
- bool has_simdgroup_reduction;
- bool has_simdgroup_mm;
- bool has_residency_sets;
- bool has_bfloat;
- bool use_bfloat;
- bool use_fusion;
- bool use_concurrency;
- bool use_shared_buffers;
- bool use_graph_optimize;
-
- int debug_graph;
- int debug_fusion;
-
- // how many times a given op was fused
- uint64_t fuse_cnt[GGML_OP_COUNT];
-
- size_t max_size;
-
- char name[128];
-} g_ggml_ctx_dev_main = {
- /*.mtl_device =*/ nil,
- /*.mtl_device_ref_count =*/ 0,
- /*.mtl_library =*/ nil,
- /*.mtl_queue =*/ nil,
- /*.mtl_lock =*/ nil,
- /*.has_simdgroup_reduction =*/ false,
- /*.has_simdgroup_mm =*/ false,
- /*.has_residency_sets =*/ false,
- /*.has_bfloat =*/ false,
- /*.use_bfloat =*/ false,
- /*.use_fusion =*/ true,
- /*.use_concurrency =*/ true,
- /*.use_shared_buffers =*/ true,
- /*.use_graph_optimize =*/ true,
- /*.debug_graph =*/ 0,
- /*.debug_fusion =*/ 0,
- /*.fuse_cnt =*/ { 0 },
- /*.max_size =*/ 0,
- /*.name =*/ "",
-};
-
-// acquire
-static id<MTLDevice> ggml_backend_metal_device_acq(struct ggml_backend_metal_device_context * ctx) {
- assert(ctx != NULL);
-
- if (ctx->mtl_lock == nil) {
- ctx->mtl_lock = [[NSLock alloc] init];
- }
-
- if (ctx->mtl_device == nil) {
- ctx->mtl_device = MTLCreateSystemDefaultDevice();
-
- if (ctx->mtl_device) {
- ctx->mtl_queue = [ctx->mtl_device newCommandQueue];
- if (ctx->mtl_queue == nil) {
- GGML_LOG_ERROR("%s: error: failed to create command queue\n", __func__);
- }
-
- ctx->has_simdgroup_reduction = [ctx->mtl_device supportsFamily:MTLGPUFamilyApple7];
- ctx->has_simdgroup_reduction |= [ctx->mtl_device supportsFamily:MTLGPUFamilyMetal3_GGML];
-
- ctx->has_simdgroup_mm = [ctx->mtl_device supportsFamily:MTLGPUFamilyApple7];
-
-#if defined(GGML_METAL_HAS_RESIDENCY_SETS)
- ctx->has_residency_sets = getenv("GGML_METAL_NO_RESIDENCY") == nil;
-#endif
-
- ctx->has_bfloat = [ctx->mtl_device supportsFamily:MTLGPUFamilyMetal3_GGML];
- ctx->has_bfloat |= [ctx->mtl_device supportsFamily:MTLGPUFamilyApple6];
-
-#if defined(GGML_METAL_USE_BF16)
- ctx->use_bfloat = ctx->has_bfloat;
-#else
- ctx->use_bfloat = false;
-#endif
-
- ctx->use_fusion = getenv("GGML_METAL_FUSION_DISABLE") == nil;
- ctx->use_concurrency = getenv("GGML_METAL_CONCURRENCY_DISABLE") == nil;
-
- {
- const char * val = getenv("GGML_METAL_GRAPH_DEBUG");
- ctx->debug_graph = val ? atoi(val) : 0;
- }
-
- {
- const char * val = getenv("GGML_METAL_FUSION_DEBUG");
- ctx->debug_fusion = val ? atoi(val) : 0;
- }
-
- ctx->use_shared_buffers = ctx->mtl_device.hasUnifiedMemory;
-
- if (getenv("GGML_METAL_SHARED_BUFFERS_DISABLE") != NULL) {
- ctx->use_shared_buffers = false;
- }
-
- ctx->use_graph_optimize = true;
-
- if (getenv("GGML_METAL_GRAPH_OPTIMIZE_DISABLE") != NULL) {
- ctx->use_graph_optimize = false;
- }
-
- memset(ctx->fuse_cnt, 0, sizeof(ctx->fuse_cnt));
-
- ctx->max_size = ctx->mtl_device.maxBufferLength;
-
- strncpy(ctx->name, [[ctx->mtl_device name] UTF8String], sizeof(ctx->name) - 1);
- }
- }
-
- ctx->mtl_device_ref_count++;
-
- return ctx->mtl_device;
-}
-
-// release
-static void ggml_backend_metal_device_rel(struct ggml_backend_metal_device_context * ctx) {
- assert(ctx != NULL);
- assert(ctx->mtl_device_ref_count > 0);
-
- ctx->mtl_device_ref_count--;
-
- if (ctx->mtl_device_ref_count == 0) {
- if (ctx->debug_fusion > 0) {
- fprintf(stderr, "%s: fusion stats:\n", __func__);
- for (int i = 0; i < GGML_OP_COUNT; i++) {
- if (ctx->fuse_cnt[i] == 0) {
- continue;
- }
-
- // note: cannot use ggml_log here
- fprintf(stderr, "%s: - %s: %" PRIu64 "\n", __func__, ggml_op_name((enum ggml_op) i), ctx->fuse_cnt[i]);
- }
- }
-
- if (ctx->mtl_lock) {
- [ctx->mtl_lock release];
- ctx->mtl_lock = nil;
- }
-
- if (ctx->mtl_library) {
- [ctx->mtl_library release];
- ctx->mtl_library = nil;
- }
-
- if (ctx->mtl_queue) {
- [ctx->mtl_queue release];
- ctx->mtl_queue = nil;
- }
-
- if (ctx->mtl_device) {
- [ctx->mtl_device release];
- ctx->mtl_device = nil;
- }
- }
-}
-
-// kernels
-
-struct ggml_metal_kernel {
- id<MTLComputePipelineState> pipeline;
-};
-
-@interface ggml_metal_kernel_wrapper : NSObject
-
-@property (nonatomic, assign) struct ggml_metal_kernel kernel;
-
-@end
-
-@implementation ggml_metal_kernel_wrapper
-- (void) dealloc {
- [_kernel.pipeline release];
- [super dealloc];
-}
-@end
-
-enum ggml_metal_kernel_type {
- GGML_METAL_KERNEL_TYPE_ADD_ID,
- GGML_METAL_KERNEL_TYPE_REPEAT_F32,
- GGML_METAL_KERNEL_TYPE_REPEAT_F16,
- GGML_METAL_KERNEL_TYPE_REPEAT_I32,
- GGML_METAL_KERNEL_TYPE_REPEAT_I16,
- GGML_METAL_KERNEL_TYPE_SCALE,
- GGML_METAL_KERNEL_TYPE_SCALE_4,
- GGML_METAL_KERNEL_TYPE_CLAMP,
- GGML_METAL_KERNEL_TYPE_TANH,
- GGML_METAL_KERNEL_TYPE_RELU,
- GGML_METAL_KERNEL_TYPE_SIGMOID,
- GGML_METAL_KERNEL_TYPE_GELU,
- GGML_METAL_KERNEL_TYPE_GELU_4,
- GGML_METAL_KERNEL_TYPE_GELU_ERF,
- GGML_METAL_KERNEL_TYPE_GELU_ERF_4,
- GGML_METAL_KERNEL_TYPE_GELU_QUICK,
- GGML_METAL_KERNEL_TYPE_GELU_QUICK_4,
- GGML_METAL_KERNEL_TYPE_SILU,
- GGML_METAL_KERNEL_TYPE_SILU_4,
- GGML_METAL_KERNEL_TYPE_ELU,
- GGML_METAL_KERNEL_TYPE_ABS,
- GGML_METAL_KERNEL_TYPE_SGN,
- GGML_METAL_KERNEL_TYPE_STEP,
- GGML_METAL_KERNEL_TYPE_HARDSWISH,
- GGML_METAL_KERNEL_TYPE_HARDSIGMOID,
- GGML_METAL_KERNEL_TYPE_EXP,
- GGML_METAL_KERNEL_TYPE_SOFT_MAX_F16,
- GGML_METAL_KERNEL_TYPE_SOFT_MAX_F16_4,
- GGML_METAL_KERNEL_TYPE_SOFT_MAX_F32,
- GGML_METAL_KERNEL_TYPE_SOFT_MAX_F32_4,
- GGML_METAL_KERNEL_TYPE_DIAG_MASK_INF,
- GGML_METAL_KERNEL_TYPE_DIAG_MASK_INF_8,
- GGML_METAL_KERNEL_TYPE_GET_ROWS_F32,
- GGML_METAL_KERNEL_TYPE_GET_ROWS_F16,
- GGML_METAL_KERNEL_TYPE_GET_ROWS_BF16,
- GGML_METAL_KERNEL_TYPE_GET_ROWS_Q4_0,
- GGML_METAL_KERNEL_TYPE_GET_ROWS_Q4_1,
- GGML_METAL_KERNEL_TYPE_GET_ROWS_Q5_0,
- GGML_METAL_KERNEL_TYPE_GET_ROWS_Q5_1,
- GGML_METAL_KERNEL_TYPE_GET_ROWS_Q8_0,
- GGML_METAL_KERNEL_TYPE_GET_ROWS_MXFP4,
- GGML_METAL_KERNEL_TYPE_GET_ROWS_Q2_K,
- GGML_METAL_KERNEL_TYPE_GET_ROWS_Q3_K,
- GGML_METAL_KERNEL_TYPE_GET_ROWS_Q4_K,
- GGML_METAL_KERNEL_TYPE_GET_ROWS_Q5_K,
- GGML_METAL_KERNEL_TYPE_GET_ROWS_Q6_K,
- GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ2_XXS,
- GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ2_XS,
- GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ3_XXS,
- GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ3_S,
- GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ2_S,
- GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ1_S,
- GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ1_M,
- GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ4_NL,
- GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ4_XS,
- GGML_METAL_KERNEL_TYPE_GET_ROWS_I32,
- GGML_METAL_KERNEL_TYPE_SET_ROWS_F32,
- GGML_METAL_KERNEL_TYPE_SET_ROWS_F16,
- GGML_METAL_KERNEL_TYPE_SET_ROWS_BF16,
- GGML_METAL_KERNEL_TYPE_SET_ROWS_Q8_0,
- GGML_METAL_KERNEL_TYPE_SET_ROWS_Q4_0,
- GGML_METAL_KERNEL_TYPE_SET_ROWS_Q4_1,
- GGML_METAL_KERNEL_TYPE_SET_ROWS_Q5_0,
- GGML_METAL_KERNEL_TYPE_SET_ROWS_Q5_1,
- GGML_METAL_KERNEL_TYPE_SET_ROWS_IQ4_NL,
- GGML_METAL_KERNEL_TYPE_L2_NORM,
- GGML_METAL_KERNEL_TYPE_GROUP_NORM,
- GGML_METAL_KERNEL_TYPE_NORM,
- GGML_METAL_KERNEL_TYPE_SSM_CONV_F32,
- GGML_METAL_KERNEL_TYPE_SSM_SCAN_F32,
- GGML_METAL_KERNEL_TYPE_SSM_SCAN_F32_GROUP,
- GGML_METAL_KERNEL_TYPE_RWKV_WKV6_F32,
- GGML_METAL_KERNEL_TYPE_RWKV_WKV7_F32,
- GGML_METAL_KERNEL_TYPE_MUL_MV_F32_F32,
- GGML_METAL_KERNEL_TYPE_MUL_MV_F32_F32_C4,
- GGML_METAL_KERNEL_TYPE_MUL_MV_F16_F32,
- GGML_METAL_KERNEL_TYPE_MUL_MV_F16_F32_C4,
- GGML_METAL_KERNEL_TYPE_MUL_MV_F16_F32_1ROW,
- GGML_METAL_KERNEL_TYPE_MUL_MV_F16_F32_L4,
- GGML_METAL_KERNEL_TYPE_MUL_MV_F16_F16,
- GGML_METAL_KERNEL_TYPE_MUL_MV_BF16_F32,
- GGML_METAL_KERNEL_TYPE_MUL_MV_BF16_F32_C4,
- GGML_METAL_KERNEL_TYPE_MUL_MV_BF16_F32_1ROW,
- GGML_METAL_KERNEL_TYPE_MUL_MV_BF16_F32_L4,
- GGML_METAL_KERNEL_TYPE_MUL_MV_BF16_BF16,
- GGML_METAL_KERNEL_TYPE_MUL_MV_Q4_0_F32,
- GGML_METAL_KERNEL_TYPE_MUL_MV_Q4_1_F32,
- GGML_METAL_KERNEL_TYPE_MUL_MV_Q5_0_F32,
- GGML_METAL_KERNEL_TYPE_MUL_MV_Q5_1_F32,
- GGML_METAL_KERNEL_TYPE_MUL_MV_Q8_0_F32,
- GGML_METAL_KERNEL_TYPE_MUL_MV_MXFP4_F32,
- GGML_METAL_KERNEL_TYPE_MUL_MV_EXT_F32_F32_R1_2,
- GGML_METAL_KERNEL_TYPE_MUL_MV_EXT_F32_F32_R1_3,
- GGML_METAL_KERNEL_TYPE_MUL_MV_EXT_F32_F32_R1_4,
- GGML_METAL_KERNEL_TYPE_MUL_MV_EXT_F32_F32_R1_5,
- GGML_METAL_KERNEL_TYPE_MUL_MV_EXT_F16_F32_R1_2,
- GGML_METAL_KERNEL_TYPE_MUL_MV_EXT_F16_F32_R1_3,
- GGML_METAL_KERNEL_TYPE_MUL_MV_EXT_F16_F32_R1_4,
- GGML_METAL_KERNEL_TYPE_MUL_MV_EXT_F16_F32_R1_5,
- GGML_METAL_KERNEL_TYPE_MUL_MV_EXT_Q4_0_F32_R1_2,
- GGML_METAL_KERNEL_TYPE_MUL_MV_EXT_Q4_0_F32_R1_3,
- GGML_METAL_KERNEL_TYPE_MUL_MV_EXT_Q4_0_F32_R1_4,
- GGML_METAL_KERNEL_TYPE_MUL_MV_EXT_Q4_0_F32_R1_5,
- GGML_METAL_KERNEL_TYPE_MUL_MV_EXT_Q4_1_F32_R1_2,
- GGML_METAL_KERNEL_TYPE_MUL_MV_EXT_Q4_1_F32_R1_3,
- GGML_METAL_KERNEL_TYPE_MUL_MV_EXT_Q4_1_F32_R1_4,
- GGML_METAL_KERNEL_TYPE_MUL_MV_EXT_Q4_1_F32_R1_5,
- GGML_METAL_KERNEL_TYPE_MUL_MV_EXT_Q5_0_F32_R1_2,
- GGML_METAL_KERNEL_TYPE_MUL_MV_EXT_Q5_0_F32_R1_3,
- GGML_METAL_KERNEL_TYPE_MUL_MV_EXT_Q5_0_F32_R1_4,
- GGML_METAL_KERNEL_TYPE_MUL_MV_EXT_Q5_0_F32_R1_5,
- GGML_METAL_KERNEL_TYPE_MUL_MV_EXT_Q5_1_F32_R1_2,
- GGML_METAL_KERNEL_TYPE_MUL_MV_EXT_Q5_1_F32_R1_3,
- GGML_METAL_KERNEL_TYPE_MUL_MV_EXT_Q5_1_F32_R1_4,
- GGML_METAL_KERNEL_TYPE_MUL_MV_EXT_Q5_1_F32_R1_5,
- GGML_METAL_KERNEL_TYPE_MUL_MV_EXT_Q8_0_F32_R1_2,
- GGML_METAL_KERNEL_TYPE_MUL_MV_EXT_Q8_0_F32_R1_3,
- GGML_METAL_KERNEL_TYPE_MUL_MV_EXT_Q8_0_F32_R1_4,
- GGML_METAL_KERNEL_TYPE_MUL_MV_EXT_Q8_0_F32_R1_5,
- GGML_METAL_KERNEL_TYPE_MUL_MV_EXT_MXFP4_F32_R1_2,
- GGML_METAL_KERNEL_TYPE_MUL_MV_EXT_MXFP4_F32_R1_3,
- GGML_METAL_KERNEL_TYPE_MUL_MV_EXT_MXFP4_F32_R1_4,
- GGML_METAL_KERNEL_TYPE_MUL_MV_EXT_MXFP4_F32_R1_5,
- GGML_METAL_KERNEL_TYPE_MUL_MV_EXT_Q4_K_F32_R1_2,
- GGML_METAL_KERNEL_TYPE_MUL_MV_EXT_Q4_K_F32_R1_3,
- GGML_METAL_KERNEL_TYPE_MUL_MV_EXT_Q4_K_F32_R1_4,
- GGML_METAL_KERNEL_TYPE_MUL_MV_EXT_Q4_K_F32_R1_5,
- GGML_METAL_KERNEL_TYPE_MUL_MV_EXT_Q5_K_F32_R1_2,
- GGML_METAL_KERNEL_TYPE_MUL_MV_EXT_Q5_K_F32_R1_3,
- GGML_METAL_KERNEL_TYPE_MUL_MV_EXT_Q5_K_F32_R1_4,
- GGML_METAL_KERNEL_TYPE_MUL_MV_EXT_Q5_K_F32_R1_5,
- GGML_METAL_KERNEL_TYPE_MUL_MV_EXT_Q6_K_F32_R1_2,
- GGML_METAL_KERNEL_TYPE_MUL_MV_EXT_Q6_K_F32_R1_3,
- GGML_METAL_KERNEL_TYPE_MUL_MV_EXT_Q6_K_F32_R1_4,
- GGML_METAL_KERNEL_TYPE_MUL_MV_EXT_Q6_K_F32_R1_5,
- GGML_METAL_KERNEL_TYPE_MUL_MV_EXT_IQ4_NL_F32_R1_2,
- GGML_METAL_KERNEL_TYPE_MUL_MV_EXT_IQ4_NL_F32_R1_3,
- GGML_METAL_KERNEL_TYPE_MUL_MV_EXT_IQ4_NL_F32_R1_4,
- GGML_METAL_KERNEL_TYPE_MUL_MV_EXT_IQ4_NL_F32_R1_5,
- GGML_METAL_KERNEL_TYPE_MUL_MV_Q2_K_F32,
- GGML_METAL_KERNEL_TYPE_MUL_MV_Q3_K_F32,
- GGML_METAL_KERNEL_TYPE_MUL_MV_Q4_K_F32,
- GGML_METAL_KERNEL_TYPE_MUL_MV_Q5_K_F32,
- GGML_METAL_KERNEL_TYPE_MUL_MV_Q6_K_F32,
- GGML_METAL_KERNEL_TYPE_MUL_MV_IQ2_XXS_F32,
- GGML_METAL_KERNEL_TYPE_MUL_MV_IQ2_XS_F32,
- GGML_METAL_KERNEL_TYPE_MUL_MV_IQ3_XXS_F32,
- GGML_METAL_KERNEL_TYPE_MUL_MV_IQ3_S_F32,
- GGML_METAL_KERNEL_TYPE_MUL_MV_IQ2_S_F32,
- GGML_METAL_KERNEL_TYPE_MUL_MV_IQ1_S_F32,
- GGML_METAL_KERNEL_TYPE_MUL_MV_IQ1_M_F32,
- GGML_METAL_KERNEL_TYPE_MUL_MV_IQ4_NL_F32,
- GGML_METAL_KERNEL_TYPE_MUL_MV_IQ4_XS_F32,
- GGML_METAL_KERNEL_TYPE_MUL_MV_ID_F32_F32,
- GGML_METAL_KERNEL_TYPE_MUL_MV_ID_F16_F32,
- //GGML_METAL_KERNEL_TYPE_MUL_MV_ID_F16_F32_1ROW,
- //GGML_METAL_KERNEL_TYPE_MUL_MV_ID_F16_F32_L4,
- //GGML_METAL_KERNEL_TYPE_MUL_MV_ID_F16_F16,
- GGML_METAL_KERNEL_TYPE_MUL_MV_ID_BF16_F32,
- GGML_METAL_KERNEL_TYPE_MUL_MV_ID_Q4_0_F32,
- GGML_METAL_KERNEL_TYPE_MUL_MV_ID_Q4_1_F32,
- GGML_METAL_KERNEL_TYPE_MUL_MV_ID_Q5_0_F32,
- GGML_METAL_KERNEL_TYPE_MUL_MV_ID_Q5_1_F32,
- GGML_METAL_KERNEL_TYPE_MUL_MV_ID_Q8_0_F32,
- GGML_METAL_KERNEL_TYPE_MUL_MV_ID_MXFP4_F32,
- GGML_METAL_KERNEL_TYPE_MUL_MV_ID_Q2_K_F32,
- GGML_METAL_KERNEL_TYPE_MUL_MV_ID_Q3_K_F32,
- GGML_METAL_KERNEL_TYPE_MUL_MV_ID_Q4_K_F32,
- GGML_METAL_KERNEL_TYPE_MUL_MV_ID_Q5_K_F32,
- GGML_METAL_KERNEL_TYPE_MUL_MV_ID_Q6_K_F32,
- GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ2_XXS_F32,
- GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ2_XS_F32,
- GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ3_XXS_F32,
- GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ3_S_F32,
- GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ2_S_F32,
- GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ1_S_F32,
- GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ1_M_F32,
- GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ4_NL_F32,
- GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ4_XS_F32,
- GGML_METAL_KERNEL_TYPE_MUL_MM_F32_F32,
- GGML_METAL_KERNEL_TYPE_MUL_MM_F16_F32,
- GGML_METAL_KERNEL_TYPE_MUL_MM_BF16_F32,
- GGML_METAL_KERNEL_TYPE_MUL_MM_Q4_0_F32,
- GGML_METAL_KERNEL_TYPE_MUL_MM_Q4_1_F32,
- GGML_METAL_KERNEL_TYPE_MUL_MM_Q5_0_F32,
- GGML_METAL_KERNEL_TYPE_MUL_MM_Q5_1_F32,
- GGML_METAL_KERNEL_TYPE_MUL_MM_Q8_0_F32,
- GGML_METAL_KERNEL_TYPE_MUL_MM_MXFP4_F32,
- GGML_METAL_KERNEL_TYPE_MUL_MM_Q2_K_F32,
- GGML_METAL_KERNEL_TYPE_MUL_MM_Q3_K_F32,
- GGML_METAL_KERNEL_TYPE_MUL_MM_Q4_K_F32,
- GGML_METAL_KERNEL_TYPE_MUL_MM_Q5_K_F32,
- GGML_METAL_KERNEL_TYPE_MUL_MM_Q6_K_F32,
- GGML_METAL_KERNEL_TYPE_MUL_MM_IQ2_XXS_F32,
- GGML_METAL_KERNEL_TYPE_MUL_MM_IQ2_XS_F32,
- GGML_METAL_KERNEL_TYPE_MUL_MM_IQ3_XXS_F32,
- GGML_METAL_KERNEL_TYPE_MUL_MM_IQ3_S_F32,
- GGML_METAL_KERNEL_TYPE_MUL_MM_IQ2_S_F32,
- GGML_METAL_KERNEL_TYPE_MUL_MM_IQ1_S_F32,
- GGML_METAL_KERNEL_TYPE_MUL_MM_IQ1_M_F32,
- GGML_METAL_KERNEL_TYPE_MUL_MM_IQ4_NL_F32,
- GGML_METAL_KERNEL_TYPE_MUL_MM_IQ4_XS_F32,
- GGML_METAL_KERNEL_TYPE_MUL_MM_ID_MAP0_F16_NE20_1,
- GGML_METAL_KERNEL_TYPE_MUL_MM_ID_MAP0_F16_NE20_2,
- GGML_METAL_KERNEL_TYPE_MUL_MM_ID_MAP0_F16_NE20_4,
- GGML_METAL_KERNEL_TYPE_MUL_MM_ID_MAP0_F16_NE20_6,
- GGML_METAL_KERNEL_TYPE_MUL_MM_ID_MAP0_F16_NE20_8,
- GGML_METAL_KERNEL_TYPE_MUL_MM_ID_MAP0_F16_NE20_10,
- GGML_METAL_KERNEL_TYPE_MUL_MM_ID_MAP0_F16_NE20_16,
- GGML_METAL_KERNEL_TYPE_MUL_MM_ID_F32_F16,
- GGML_METAL_KERNEL_TYPE_MUL_MM_ID_F16_F16,
- GGML_METAL_KERNEL_TYPE_MUL_MM_ID_BF16_F16,
- GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q4_0_F16,
- GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q4_1_F16,
- GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q5_0_F16,
- GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q5_1_F16,
- GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q8_0_F16,
- GGML_METAL_KERNEL_TYPE_MUL_MM_ID_MXFP4_F16,
- GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q2_K_F16,
- GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q3_K_F16,
- GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q4_K_F16,
- GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q5_K_F16,
- GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q6_K_F16,
- GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ2_XXS_F16,
- GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ2_XS_F16,
- GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ3_XXS_F16,
- GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ3_S_F16,
- GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ2_S_F16,
- GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ1_S_F16,
- GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ1_M_F16,
- GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ4_NL_F16,
- GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ4_XS_F16,
- GGML_METAL_KERNEL_TYPE_ROPE_NORM_F32,
- GGML_METAL_KERNEL_TYPE_ROPE_NORM_F16,
- GGML_METAL_KERNEL_TYPE_ROPE_MULTI_F32,
- GGML_METAL_KERNEL_TYPE_ROPE_MULTI_F16,
- GGML_METAL_KERNEL_TYPE_ROPE_VISION_F32,
- GGML_METAL_KERNEL_TYPE_ROPE_VISION_F16,
- GGML_METAL_KERNEL_TYPE_ROPE_NEOX_F32,
- GGML_METAL_KERNEL_TYPE_ROPE_NEOX_F16,
- GGML_METAL_KERNEL_TYPE_IM2COL_F16,
- GGML_METAL_KERNEL_TYPE_IM2COL_F32,
- GGML_METAL_KERNEL_TYPE_IM2COL_EXT_F16,
- GGML_METAL_KERNEL_TYPE_IM2COL_EXT_F32,
- GGML_METAL_KERNEL_TYPE_CONV_TRANSPOSE_1D_F32_F32,
- GGML_METAL_KERNEL_TYPE_CONV_TRANSPOSE_1D_F16_F32,
- GGML_METAL_KERNEL_TYPE_UPSCALE_F32,
- GGML_METAL_KERNEL_TYPE_PAD_F32,
- GGML_METAL_KERNEL_TYPE_PAD_REFLECT_1D_F32,
- GGML_METAL_KERNEL_TYPE_ARANGE_F32,
- GGML_METAL_KERNEL_TYPE_TIMESTEP_EMBEDDING_F32,
- GGML_METAL_KERNEL_TYPE_ARGSORT_F32_I32_ASC,
- GGML_METAL_KERNEL_TYPE_ARGSORT_F32_I32_DESC,
- GGML_METAL_KERNEL_TYPE_LEAKY_RELU_F32,
- GGML_METAL_KERNEL_TYPE_CPY_F32_F32,
- GGML_METAL_KERNEL_TYPE_CPY_F32_F16,
- GGML_METAL_KERNEL_TYPE_CPY_F32_BF16,
- GGML_METAL_KERNEL_TYPE_CPY_F16_F16,
- GGML_METAL_KERNEL_TYPE_CPY_F16_F32,
- GGML_METAL_KERNEL_TYPE_CPY_BF16_F32,
- GGML_METAL_KERNEL_TYPE_CPY_BF16_BF16,
- GGML_METAL_KERNEL_TYPE_CPY_F32_I32,
- GGML_METAL_KERNEL_TYPE_CPY_I32_F32,
- GGML_METAL_KERNEL_TYPE_CPY_F32_Q8_0,
- GGML_METAL_KERNEL_TYPE_CPY_F32_Q4_0,
- GGML_METAL_KERNEL_TYPE_CPY_F32_Q4_1,
- GGML_METAL_KERNEL_TYPE_CPY_F32_Q5_0,
- GGML_METAL_KERNEL_TYPE_CPY_F32_Q5_1,
- GGML_METAL_KERNEL_TYPE_CPY_F32_IQ4_NL,
- GGML_METAL_KERNEL_TYPE_CPY_Q4_0_F32,
- GGML_METAL_KERNEL_TYPE_CPY_Q4_0_F16,
- GGML_METAL_KERNEL_TYPE_CPY_Q4_1_F32,
- GGML_METAL_KERNEL_TYPE_CPY_Q4_1_F16,
- GGML_METAL_KERNEL_TYPE_CPY_Q5_0_F32,
- GGML_METAL_KERNEL_TYPE_CPY_Q5_0_F16,
- GGML_METAL_KERNEL_TYPE_CPY_Q5_1_F32,
- GGML_METAL_KERNEL_TYPE_CPY_Q5_1_F16,
- GGML_METAL_KERNEL_TYPE_CPY_Q8_0_F32,
- GGML_METAL_KERNEL_TYPE_CPY_Q8_0_F16,
- GGML_METAL_KERNEL_TYPE_CONCAT,
- GGML_METAL_KERNEL_TYPE_SQR,
- GGML_METAL_KERNEL_TYPE_SQRT,
- GGML_METAL_KERNEL_TYPE_SIN,
- GGML_METAL_KERNEL_TYPE_COS,
- GGML_METAL_KERNEL_TYPE_NEG,
- GGML_METAL_KERNEL_TYPE_REGLU,
- GGML_METAL_KERNEL_TYPE_GEGLU,
- GGML_METAL_KERNEL_TYPE_SWIGLU,
- GGML_METAL_KERNEL_TYPE_SWIGLU_OAI,
- GGML_METAL_KERNEL_TYPE_GEGLU_ERF,
- GGML_METAL_KERNEL_TYPE_GEGLU_QUICK,
- GGML_METAL_KERNEL_TYPE_SUM_ROWS,
- GGML_METAL_KERNEL_TYPE_MEAN,
- GGML_METAL_KERNEL_TYPE_POOL_2D_AVG_F32,
- GGML_METAL_KERNEL_TYPE_POOL_2D_MAX_F32,
- GGML_METAL_KERNEL_TYPE_ARGMAX,
-
- GGML_METAL_KERNEL_TYPE_COUNT
-};
-
-struct ggml_metal_command_buffer {
- id<MTLCommandBuffer> obj;
-
- // used to enable concurrent execution of ops in the command buffers
- struct ggml_mem_ranges * mem_ranges;
-};
-
-struct ggml_backend_metal_context {
- id<MTLDevice> device;
- id<MTLCommandQueue> queue; // currently a pointer to the device queue, but might become separate queue [TAG_QUEUE_PER_BACKEND]
-
- dispatch_queue_t d_queue;
-
- // the set of pre-compiled kernels for this context
- struct ggml_metal_kernel kernels[GGML_METAL_KERNEL_TYPE_COUNT];
-
- // additional, inference-time compiled kernels
- NSMutableDictionary * kernels_ext;
-
- // capture state
- bool capture_next_compute;
- bool capture_started;
-
- id<MTLCaptureScope> capture_scope;
-
- // command buffer state
- int n_cb; // number of extra threads used to submit the command buffers
- int n_nodes_0; // number of nodes submitted by the main thread
- int n_nodes_1; // remaining number of nodes submitted by the n_cb threads
- int n_nodes_per_cb;
-
- struct ggml_cgraph * gf;
-
- // the callback given to the thread pool
- void (^encode_async)(size_t ith);
-
- // n_cb command buffers + 1 used by the main thread
- struct ggml_metal_command_buffer cmd_bufs[GGML_METAL_MAX_COMMAND_BUFFERS + 1];
-
- // extra command buffers for things like getting, setting and copying tensors
- NSMutableArray * cmd_bufs_ext;
-
- // the last command buffer queued into the Metal queue with operations relevant to the current Metal backend
- id<MTLCommandBuffer> cmd_buf_last;
-
- // abort ggml_metal_graph_compute if callback returns true
- ggml_abort_callback abort_callback;
- void * abort_callback_data;
-};
-
-// MSL code
-// TODO: move the contents here when ready
-// for now it is easier to work in a separate file
-// static NSString * const msl_library_source = @"see metal.metal";
-
-#if !GGML_METAL_EMBED_LIBRARY
-// Here to assist with NSBundle Path Hack
-@interface GGMLMetalClass : NSObject
-@end
-@implementation GGMLMetalClass
-@end
-#endif
-
-static void * ggml_metal_host_malloc(size_t n) {
- void * data = NULL;
-
-#if TARGET_OS_OSX
- kern_return_t err = vm_allocate((vm_map_t) mach_task_self(), (void *) &data, n, VM_FLAGS_ANYWHERE);
- if (err != KERN_SUCCESS) {
- GGML_LOG_ERROR("%s: error: vm_allocate failed\n", __func__);
- return NULL;
- }
-#else
- const int result = posix_memalign((void **) &data, sysconf(_SC_PAGESIZE), n);
- if (result != 0) {
- GGML_LOG_ERROR("%s: error: posix_memalign failed\n", __func__);
- return NULL;
- }
-#endif
-
- return data;
-}
-
-// load library
-//
-// - first check if the library is embedded
-// - then check if the library is in the bundle
-// - if not found, load the source and compile it
-// - if that fails, return NULL
-static id<MTLLibrary> ggml_metal_load_library(id<MTLDevice> device, bool use_bfloat) {
- const int64_t t_start = ggml_time_us();
-
- id<MTLLibrary> metal_library = nil;
- NSError * error = nil;
- NSString * src = nil;
-
-#if GGML_METAL_EMBED_LIBRARY
- GGML_LOG_INFO("%s: using embedded metal library\n", __func__);
-
- extern const char ggml_metallib_start[];
- extern const char ggml_metallib_end[];
-
- src = [[NSString alloc] initWithBytes:ggml_metallib_start length:(ggml_metallib_end-ggml_metallib_start) encoding:NSUTF8StringEncoding];
-
-#else
-
-#ifdef SWIFT_PACKAGE
- NSBundle * bundle = SWIFTPM_MODULE_BUNDLE;
-#else
- NSBundle * bundle = [NSBundle bundleForClass:[GGMLMetalClass class]];
-#endif
-
- NSString * path_lib = [bundle pathForResource:@"default" ofType:@"metallib"];
- if (path_lib == nil) {
- // Try to find the resource in the directory where the current binary located.
- NSString * current_binary = [[NSProcessInfo processInfo] arguments][0];
- NSString * bin_dir = [current_binary stringByDeletingLastPathComponent];
- NSString * default_metallib_path = [NSString pathWithComponents:@[bin_dir, @"default.metallib"]];
- if ([[NSFileManager defaultManager] isReadableFileAtPath:default_metallib_path]) {
- GGML_LOG_INFO("%s: found '%s'\n", __func__, [default_metallib_path UTF8String]);
- NSDictionary * atts = [[NSFileManager defaultManager] attributesOfItemAtPath:default_metallib_path error:&error];
- if (atts && atts[NSFileType] == NSFileTypeSymbolicLink) {
- // Optionally, if this is a symlink, try to resolve it.
- default_metallib_path = [[NSFileManager defaultManager] destinationOfSymbolicLinkAtPath:default_metallib_path error:&error];
- if (default_metallib_path && [default_metallib_path length] > 0 && ![[default_metallib_path substringToIndex:1] isEqualToString:@"/"]) {
- // It is a relative path, adding the binary directory as directory prefix.
- default_metallib_path = [NSString pathWithComponents:@[bin_dir, default_metallib_path]];
- }
- if (!default_metallib_path || ![[NSFileManager defaultManager] isReadableFileAtPath:default_metallib_path]) {
- // Link to the resource could not be resolved.
- default_metallib_path = nil;
- } else {
- GGML_LOG_INFO("%s: symlink resolved '%s'\n", __func__, [default_metallib_path UTF8String]);
- }
- }
- } else {
- // The resource couldn't be found in the binary's directory.
- default_metallib_path = nil;
- }
- path_lib = default_metallib_path;
- }
-
- if (path_lib != nil) {
- // pre-compiled library found
- NSURL * libURL = [NSURL fileURLWithPath:path_lib];
- GGML_LOG_INFO("%s: loading '%s'\n", __func__, [path_lib UTF8String]);
-
- metal_library = [device newLibraryWithURL:libURL error:&error];
- if (error) {
- GGML_LOG_ERROR("%s: error: %s\n", __func__, [[error description] UTF8String]);
- return NULL;
- }
- } else {
- GGML_LOG_INFO("%s: default.metallib not found, loading from source\n", __func__);
-
- NSString * path_source;
- NSString * path_resource = [[NSProcessInfo processInfo].environment objectForKey:@"GGML_METAL_PATH_RESOURCES"];
-
- GGML_LOG_INFO("%s: GGML_METAL_PATH_RESOURCES = %s\n", __func__, path_resource ? [path_resource UTF8String] : "nil");
-
- if (path_resource) {
- path_source = [path_resource stringByAppendingPathComponent:@"ggml-metal.metal"];
- } else {
- path_source = [bundle pathForResource:@"ggml-metal" ofType:@"metal"];
- }
-
- if (path_source == nil) {
- GGML_LOG_WARN("%s: error: could not use bundle path to find ggml-metal.metal, falling back to trying cwd\n", __func__);
- path_source = @"ggml-metal.metal";
- }
-
- GGML_LOG_INFO("%s: loading '%s'\n", __func__, [path_source UTF8String]);
-
- src = [NSString stringWithContentsOfFile:path_source encoding:NSUTF8StringEncoding error:&error];
- if (error) {
- GGML_LOG_ERROR("%s: error: %s\n", __func__, [[error description] UTF8String]);
- return NULL;
- }
- }
-#endif
-
- if (!metal_library) {
- @autoreleasepool {
- // dictionary of preprocessor macros
- NSMutableDictionary * prep = [NSMutableDictionary dictionary];
-
- if (use_bfloat) {
- [prep setObject:@"1" forKey:@"GGML_METAL_USE_BF16"];
- }
-
-#if GGML_METAL_EMBED_LIBRARY
- [prep setObject:@"1" forKey:@"GGML_METAL_EMBED_LIBRARY"];
-#endif
-
- MTLCompileOptions * options = [MTLCompileOptions new];
- options.preprocessorMacros = prep;
-
- //[options setFastMathEnabled:false];
-
- metal_library = [device newLibraryWithSource:src options:options error:&error];
- if (error) {
- GGML_LOG_ERROR("%s: error: %s\n", __func__, [[error description] UTF8String]);
- return NULL;
- }
-
-#if !__has_feature(objc_arc)
- [options release];
-#endif
- }
- }
-
-#if GGML_METAL_EMBED_LIBRARY
- [src release];
-#endif // GGML_METAL_EMBED_LIBRARY
-
- GGML_LOG_INFO("%s: loaded in %.3f sec\n", __func__, (ggml_time_us() - t_start) / 1e6);
-
- return metal_library;
-}
-
-static struct ggml_backend_metal_context * ggml_metal_init(ggml_backend_dev_t dev) {
- GGML_LOG_INFO("%s: allocating\n", __func__);
-
-#if TARGET_OS_OSX && !GGML_METAL_NDEBUG
- // Show all the Metal device instances in the system
- NSArray * devices = MTLCopyAllDevices();
- for (id<MTLDevice> device in devices) {
- GGML_LOG_INFO("%s: found device: %s\n", __func__, [[device name] UTF8String]);
- }
- [devices release]; // since it was created by a *Copy* C method
-#endif
-
- // init context
- struct ggml_backend_metal_context * ctx = calloc(1, sizeof(struct ggml_backend_metal_context));
- struct ggml_backend_metal_device_context * ctx_dev = dev->context;
-
- id<MTLDevice> device = ctx_dev->mtl_device;
-
- GGML_LOG_INFO("%s: picking default device: %s\n", __func__, [[device name] UTF8String]);
-
- ctx->device = device;
-
- // TODO: question - would it be better to have one queue for the backend and one queue for the device?
- // the graph encoders and async ops would use the backend queue while the sync ops would use the device queue?
- //ctx->queue = [device newCommandQueue]; [TAG_QUEUE_PER_BACKEND]
- ctx->queue = ctx_dev->mtl_queue;
- if (ctx->queue == nil) {
- GGML_LOG_ERROR("%s: error: failed to create command queue\n", __func__);
- return NULL;
- }
-
- ctx->d_queue = dispatch_queue_create("ggml-metal", DISPATCH_QUEUE_CONCURRENT);
-
- // load library
- {
- [ctx_dev->mtl_lock lock];
-
- if (ctx_dev->mtl_library == nil) {
- ctx_dev->mtl_library = ggml_metal_load_library(device, ctx_dev->use_bfloat);
- }
-
- [ctx_dev->mtl_lock unlock];
- }
-
- id<MTLLibrary> metal_library = ctx_dev->mtl_library;
- if (metal_library == nil) {
- GGML_LOG_ERROR("%s: error: metal library is nil\n", __func__);
- return NULL;
- }
-
- // print MTL GPU family:
- GGML_LOG_INFO("%s: GPU name: %s\n", __func__, [[device name] UTF8String]);
-
- // determine max supported GPU family
- // https://developer.apple.com/metal/Metal-Shading-Language-Specification.pdf
- // https://developer.apple.com/metal/Metal-Feature-Set-Tables.pdf
- {
- for (int i = MTLGPUFamilyApple1 + 20; i >= MTLGPUFamilyApple1; --i) {
- if ([device supportsFamily:i]) {
- GGML_LOG_INFO("%s: GPU family: MTLGPUFamilyApple%d (%d)\n", __func__, i - (int) MTLGPUFamilyApple1 + 1, i);
- break;
- }
- }
-
- for (int i = MTLGPUFamilyCommon1 + 5; i >= MTLGPUFamilyCommon1; --i) {
- if ([device supportsFamily:i]) {
- GGML_LOG_INFO("%s: GPU family: MTLGPUFamilyCommon%d (%d)\n", __func__, i - (int) MTLGPUFamilyCommon1 + 1, i);
- break;
- }
- }
-
- for (int i = MTLGPUFamilyMetal3_GGML + 5; i >= MTLGPUFamilyMetal3_GGML; --i) {
- if ([device supportsFamily:i]) {
- GGML_LOG_INFO("%s: GPU family: MTLGPUFamilyMetal%d (%d)\n", __func__, i - (int) MTLGPUFamilyMetal3_GGML + 3, i);
- break;
- }
- }
- }
-
- GGML_LOG_INFO("%s: simdgroup reduction = %s\n", __func__, ctx_dev->has_simdgroup_reduction ? "true" : "false");
- GGML_LOG_INFO("%s: simdgroup matrix mul. = %s\n", __func__, ctx_dev->has_simdgroup_mm ? "true" : "false");
- GGML_LOG_INFO("%s: has residency sets = %s\n", __func__, ctx_dev->has_residency_sets ? "true" : "false");
- GGML_LOG_INFO("%s: has bfloat = %s\n", __func__, ctx_dev->has_bfloat ? "true" : "false");
- GGML_LOG_INFO("%s: use bfloat = %s\n", __func__, ctx_dev->use_bfloat ? "true" : "false");
- GGML_LOG_INFO("%s: use fusion = %s\n", __func__, ctx_dev->use_fusion ? "true" : "false");
- GGML_LOG_INFO("%s: use concurrency = %s\n", __func__, ctx_dev->use_concurrency ? "true" : "false");
- GGML_LOG_INFO("%s: use shared buffers = %s\n", __func__, ctx_dev->use_shared_buffers ? "true" : "false");
- GGML_LOG_INFO("%s: use graph optimize = %s\n", __func__, ctx_dev->use_graph_optimize ? "true" : "false");
- GGML_LOG_INFO("%s: hasUnifiedMemory = %s\n", __func__, ctx_dev->mtl_device.hasUnifiedMemory ? "true" : "false");
-
- ctx->capture_next_compute = false;
- ctx->capture_started = false;
- ctx->capture_scope = nil;
-
- ctx->gf = nil;
- ctx->encode_async = nil;
- for (int i = 0; i < GGML_METAL_MAX_COMMAND_BUFFERS; ++i) {
- ctx->cmd_bufs[i].obj = nil;
-
- if (ctx_dev->use_concurrency) {
- ctx->cmd_bufs[i].mem_ranges = ggml_mem_ranges_init(ctx_dev->debug_graph);
- }
- }
-
- ctx->cmd_bufs_ext = [[NSMutableArray alloc] init];
-
- ctx->cmd_buf_last = nil;
-
-#if TARGET_OS_OSX || (TARGET_OS_IOS && __clang_major__ >= 15)
- if (@available(macOS 10.12, iOS 16.0, *)) {
- GGML_LOG_INFO("%s: recommendedMaxWorkingSetSize = %8.2f MB\n", __func__, device.recommendedMaxWorkingSetSize / 1e6);
- }
-#endif
-
- // load kernels
- {
- NSError * error = nil;
-
- for (int i = 0; i < GGML_METAL_KERNEL_TYPE_COUNT; ++i) {
- ctx->kernels[i].pipeline = nil;
- }
-
-#define GGML_METAL_ADD_KERNEL(e, name, supported) \
- if (supported) { \
- struct ggml_metal_kernel * kernel = &ctx->kernels[e]; \
- id<MTLFunction> metal_function = [metal_library newFunctionWithName:@"kernel_"#name]; \
- kernel->pipeline = [device newComputePipelineStateWithFunction:metal_function error:&error]; \
- GGML_LOG_DEBUG("%s: loaded %-40s %16p | th_max = %4d | th_width = %4d\n", __func__, "kernel_"#name, (void *) kernel->pipeline, \
- (int) kernel->pipeline.maxTotalThreadsPerThreadgroup, \
- (int) kernel->pipeline.threadExecutionWidth); \
- [metal_function release]; \
- if (error) { \
- GGML_LOG_ERROR("%s: error: load pipeline error: %s\n", __func__, [[error description] UTF8String]); \
- return NULL; \
- } \
- } else { \
- GGML_LOG_WARN("%s: skipping %-40s (not supported)\n", __func__, "kernel_"#name); \
- }
-
- const bool has_simdgroup_mm = ctx_dev->has_simdgroup_mm;
- const bool has_simdgroup_reduction = ctx_dev->has_simdgroup_reduction;
- const bool use_bfloat = ctx_dev->use_bfloat;
-
- // simd_sum and simd_max requires MTLGPUFamilyApple7
-
- GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_ADD_ID, add_id, true);
- GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_REPEAT_F32, repeat_f32, true);
- GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_REPEAT_F16, repeat_f16, true);
- GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_REPEAT_I32, repeat_i32, true);
- GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_REPEAT_I16, repeat_i16, true);
- GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_SCALE, scale, true);
- GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_SCALE_4, scale_4, true);
- GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_CLAMP, clamp, true);
- GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_TANH, tanh, true);
- GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_RELU, relu, true);
- GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_SIGMOID, sigmoid, true);
- GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GELU, gelu, true);
- GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GELU_4, gelu_4, true);
- GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GELU_ERF, gelu_erf, true);
- GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GELU_ERF_4, gelu_erf_4, true);
- GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GELU_QUICK, gelu_quick, true);
- GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GELU_QUICK_4, gelu_quick_4, true);
- GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_SILU, silu, true);
- GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_SILU_4, silu_4, true);
- GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_ELU, elu, true);
- GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_ABS, abs, true);
- GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_SGN, sgn, true);
- GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_STEP, step, true);
- GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_HARDSWISH, hardswish, true);
- GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_HARDSIGMOID, hardsigmoid, true);
- GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_EXP, exp, true);
- GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_SOFT_MAX_F16, soft_max_f16, has_simdgroup_reduction);
- GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_SOFT_MAX_F16_4, soft_max_f16_4, has_simdgroup_reduction);
- GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_SOFT_MAX_F32, soft_max_f32, has_simdgroup_reduction);
- GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_SOFT_MAX_F32_4, soft_max_f32_4, has_simdgroup_reduction);
- GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_DIAG_MASK_INF, diag_mask_inf, true);
- GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_DIAG_MASK_INF_8, diag_mask_inf_8, true);
- GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GET_ROWS_F32, get_rows_f32, true);
- GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GET_ROWS_F16, get_rows_f16, true);
- GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GET_ROWS_BF16, get_rows_bf16, use_bfloat);
- GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GET_ROWS_Q4_0, get_rows_q4_0, true);
- GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GET_ROWS_Q4_1, get_rows_q4_1, true);
- GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GET_ROWS_Q5_0, get_rows_q5_0, true);
- GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GET_ROWS_Q5_1, get_rows_q5_1, true);
- GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GET_ROWS_Q8_0, get_rows_q8_0, true);
- GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GET_ROWS_MXFP4, get_rows_mxfp4, true);
- GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GET_ROWS_Q2_K, get_rows_q2_K, true);
- GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GET_ROWS_Q3_K, get_rows_q3_K, true);
- GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GET_ROWS_Q4_K, get_rows_q4_K, true);
- GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GET_ROWS_Q5_K, get_rows_q5_K, true);
- GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GET_ROWS_Q6_K, get_rows_q6_K, true);
- GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ2_XXS, get_rows_iq2_xxs, true);
- GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ2_XS, get_rows_iq2_xs, true);
- GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ3_XXS, get_rows_iq3_xxs, true);
- GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ3_S, get_rows_iq3_s, true);
- GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ2_S, get_rows_iq2_s, true);
- GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ1_S, get_rows_iq1_s, true);
- GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ1_M, get_rows_iq1_m, true);
- GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ4_NL, get_rows_iq4_nl, true);
- GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ4_XS, get_rows_iq4_xs, true);
- GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GET_ROWS_I32, get_rows_i32, true);
- GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_SET_ROWS_F32, set_rows_f32, true);
- GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_SET_ROWS_F16, set_rows_f16, true);
- GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_SET_ROWS_BF16, set_rows_bf16, use_bfloat);
- GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_SET_ROWS_Q8_0, set_rows_q8_0, true);
- GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_SET_ROWS_Q4_0, set_rows_q4_0, true);
- GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_SET_ROWS_Q4_1, set_rows_q4_1, true);
- GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_SET_ROWS_Q5_0, set_rows_q5_0, true);
- GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_SET_ROWS_Q5_1, set_rows_q5_1, true);
- GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_SET_ROWS_IQ4_NL, set_rows_iq4_nl, true);
- GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_L2_NORM, l2_norm, has_simdgroup_reduction);
- GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GROUP_NORM, group_norm, has_simdgroup_reduction);
- GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_NORM, norm, has_simdgroup_reduction);
- GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_SSM_CONV_F32, ssm_conv_f32, true);
- GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_SSM_SCAN_F32, ssm_scan_f32, has_simdgroup_reduction);
- GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_SSM_SCAN_F32_GROUP, ssm_scan_f32_group, has_simdgroup_reduction);
- GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_RWKV_WKV6_F32, rwkv_wkv6_f32, true);
- GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_RWKV_WKV7_F32, rwkv_wkv7_f32, true);
- GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_F32_F32, mul_mv_f32_f32, has_simdgroup_reduction);
- GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_F32_F32_C4, mul_mv_f32_f32_c4, true);
- GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_BF16_F32, mul_mv_bf16_f32, has_simdgroup_reduction && use_bfloat);
- GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_BF16_F32_C4, mul_mv_bf16_f32_c4, use_bfloat);
- GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_BF16_F32_1ROW, mul_mv_bf16_f32_1row, has_simdgroup_reduction && use_bfloat);
- GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_BF16_F32_L4, mul_mv_bf16_f32_l4, has_simdgroup_reduction && use_bfloat);
- GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_BF16_BF16, mul_mv_bf16_bf16, has_simdgroup_reduction && use_bfloat);
- GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_F16_F32, mul_mv_f16_f32, has_simdgroup_reduction);
- GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_F16_F32_C4, mul_mv_f16_f32_c4, true);
- GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_F16_F32_1ROW, mul_mv_f16_f32_1row, has_simdgroup_reduction);
- GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_F16_F32_L4, mul_mv_f16_f32_l4, has_simdgroup_reduction);
- GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_F16_F16, mul_mv_f16_f16, has_simdgroup_reduction);
- GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_Q4_0_F32, mul_mv_q4_0_f32, has_simdgroup_reduction);
- GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_Q4_1_F32, mul_mv_q4_1_f32, has_simdgroup_reduction);
- GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_Q5_0_F32, mul_mv_q5_0_f32, has_simdgroup_reduction);
- GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_Q5_1_F32, mul_mv_q5_1_f32, has_simdgroup_reduction);
- GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_Q8_0_F32, mul_mv_q8_0_f32, has_simdgroup_reduction);
- GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_MXFP4_F32, mul_mv_mxfp4_f32, has_simdgroup_reduction);
- GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_EXT_F32_F32_R1_2, mul_mv_ext_f32_f32_r1_2, has_simdgroup_reduction);
- GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_EXT_F32_F32_R1_3, mul_mv_ext_f32_f32_r1_3, has_simdgroup_reduction);
- GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_EXT_F32_F32_R1_4, mul_mv_ext_f32_f32_r1_4, has_simdgroup_reduction);
- GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_EXT_F32_F32_R1_5, mul_mv_ext_f32_f32_r1_5, has_simdgroup_reduction);
- GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_EXT_F16_F32_R1_2, mul_mv_ext_f16_f32_r1_2, has_simdgroup_reduction);
- GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_EXT_F16_F32_R1_3, mul_mv_ext_f16_f32_r1_3, has_simdgroup_reduction);
- GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_EXT_F16_F32_R1_4, mul_mv_ext_f16_f32_r1_4, has_simdgroup_reduction);
- GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_EXT_F16_F32_R1_5, mul_mv_ext_f16_f32_r1_5, has_simdgroup_reduction);
- GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_EXT_Q4_0_F32_R1_2, mul_mv_ext_q4_0_f32_r1_2, has_simdgroup_reduction);
- GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_EXT_Q4_0_F32_R1_3, mul_mv_ext_q4_0_f32_r1_3, has_simdgroup_reduction);
- GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_EXT_Q4_0_F32_R1_4, mul_mv_ext_q4_0_f32_r1_4, has_simdgroup_reduction);
- GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_EXT_Q4_0_F32_R1_5, mul_mv_ext_q4_0_f32_r1_5, has_simdgroup_reduction);
- GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_EXT_Q4_1_F32_R1_2, mul_mv_ext_q4_1_f32_r1_2, has_simdgroup_reduction);
- GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_EXT_Q4_1_F32_R1_3, mul_mv_ext_q4_1_f32_r1_3, has_simdgroup_reduction);
- GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_EXT_Q4_1_F32_R1_4, mul_mv_ext_q4_1_f32_r1_4, has_simdgroup_reduction);
- GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_EXT_Q4_1_F32_R1_5, mul_mv_ext_q4_1_f32_r1_5, has_simdgroup_reduction);
- GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_EXT_Q5_0_F32_R1_2, mul_mv_ext_q5_0_f32_r1_2, has_simdgroup_reduction);
- GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_EXT_Q5_0_F32_R1_3, mul_mv_ext_q5_0_f32_r1_3, has_simdgroup_reduction);
- GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_EXT_Q5_0_F32_R1_4, mul_mv_ext_q5_0_f32_r1_4, has_simdgroup_reduction);
- GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_EXT_Q5_0_F32_R1_5, mul_mv_ext_q5_0_f32_r1_5, has_simdgroup_reduction);
- GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_EXT_Q5_1_F32_R1_2, mul_mv_ext_q5_1_f32_r1_2, has_simdgroup_reduction);
- GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_EXT_Q5_1_F32_R1_3, mul_mv_ext_q5_1_f32_r1_3, has_simdgroup_reduction);
- GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_EXT_Q5_1_F32_R1_4, mul_mv_ext_q5_1_f32_r1_4, has_simdgroup_reduction);
- GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_EXT_Q5_1_F32_R1_5, mul_mv_ext_q5_1_f32_r1_5, has_simdgroup_reduction);
- GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_EXT_Q8_0_F32_R1_2, mul_mv_ext_q8_0_f32_r1_2, has_simdgroup_reduction);
- GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_EXT_Q8_0_F32_R1_3, mul_mv_ext_q8_0_f32_r1_3, has_simdgroup_reduction);
- GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_EXT_Q8_0_F32_R1_4, mul_mv_ext_q8_0_f32_r1_4, has_simdgroup_reduction);
- GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_EXT_Q8_0_F32_R1_5, mul_mv_ext_q8_0_f32_r1_5, has_simdgroup_reduction);
- GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_EXT_MXFP4_F32_R1_2, mul_mv_ext_mxfp4_f32_r1_2, has_simdgroup_reduction);
- GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_EXT_MXFP4_F32_R1_3, mul_mv_ext_mxfp4_f32_r1_3, has_simdgroup_reduction);
- GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_EXT_MXFP4_F32_R1_4, mul_mv_ext_mxfp4_f32_r1_4, has_simdgroup_reduction);
- GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_EXT_MXFP4_F32_R1_5, mul_mv_ext_mxfp4_f32_r1_5, has_simdgroup_reduction);
- GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_EXT_Q4_K_F32_R1_2, mul_mv_ext_q4_K_f32_r1_2, has_simdgroup_reduction);
- GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_EXT_Q4_K_F32_R1_3, mul_mv_ext_q4_K_f32_r1_3, has_simdgroup_reduction);
- GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_EXT_Q4_K_F32_R1_4, mul_mv_ext_q4_K_f32_r1_4, has_simdgroup_reduction);
- GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_EXT_Q4_K_F32_R1_5, mul_mv_ext_q4_K_f32_r1_5, has_simdgroup_reduction);
- GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_EXT_Q5_K_F32_R1_2, mul_mv_ext_q5_K_f32_r1_2, has_simdgroup_reduction);
- GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_EXT_Q5_K_F32_R1_3, mul_mv_ext_q5_K_f32_r1_3, has_simdgroup_reduction);
- GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_EXT_Q5_K_F32_R1_4, mul_mv_ext_q5_K_f32_r1_4, has_simdgroup_reduction);
- GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_EXT_Q5_K_F32_R1_5, mul_mv_ext_q5_K_f32_r1_5, has_simdgroup_reduction);
- GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_EXT_Q6_K_F32_R1_2, mul_mv_ext_q6_K_f32_r1_2, has_simdgroup_reduction);
- GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_EXT_Q6_K_F32_R1_3, mul_mv_ext_q6_K_f32_r1_3, has_simdgroup_reduction);
- GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_EXT_Q6_K_F32_R1_4, mul_mv_ext_q6_K_f32_r1_4, has_simdgroup_reduction);
- GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_EXT_Q6_K_F32_R1_5, mul_mv_ext_q6_K_f32_r1_5, has_simdgroup_reduction);
- GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_EXT_IQ4_NL_F32_R1_2, mul_mv_ext_iq4_nl_f32_r1_2, has_simdgroup_reduction);
- GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_EXT_IQ4_NL_F32_R1_3, mul_mv_ext_iq4_nl_f32_r1_3, has_simdgroup_reduction);
- GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_EXT_IQ4_NL_F32_R1_4, mul_mv_ext_iq4_nl_f32_r1_4, has_simdgroup_reduction);
- GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_EXT_IQ4_NL_F32_R1_5, mul_mv_ext_iq4_nl_f32_r1_5, has_simdgroup_reduction);
- GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_Q2_K_F32, mul_mv_q2_K_f32, has_simdgroup_reduction);
- GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_Q3_K_F32, mul_mv_q3_K_f32, has_simdgroup_reduction);
- GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_Q4_K_F32, mul_mv_q4_K_f32, has_simdgroup_reduction);
- GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_Q5_K_F32, mul_mv_q5_K_f32, has_simdgroup_reduction);
- GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_Q6_K_F32, mul_mv_q6_K_f32, has_simdgroup_reduction);
- GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_IQ2_XXS_F32, mul_mv_iq2_xxs_f32, has_simdgroup_reduction);
- GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_IQ2_XS_F32, mul_mv_iq2_xs_f32, has_simdgroup_reduction);
- GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_IQ3_XXS_F32, mul_mv_iq3_xxs_f32, has_simdgroup_reduction);
- GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_IQ3_S_F32, mul_mv_iq3_s_f32, has_simdgroup_reduction);
- GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_IQ2_S_F32, mul_mv_iq2_s_f32, has_simdgroup_reduction);
- GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_IQ1_S_F32, mul_mv_iq1_s_f32, has_simdgroup_reduction);
- GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_IQ1_M_F32, mul_mv_iq1_m_f32, has_simdgroup_reduction);
- GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_IQ4_NL_F32, mul_mv_iq4_nl_f32, has_simdgroup_reduction);
- GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_IQ4_XS_F32, mul_mv_iq4_xs_f32, has_simdgroup_reduction);
- GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_F32_F32, mul_mv_id_f32_f32, has_simdgroup_reduction);
- GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_F16_F32, mul_mv_id_f16_f32, has_simdgroup_reduction);
- //GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_F16_F32_1ROW, mul_mv_id_f16_f32_1row, has_simdgroup_reduction);
- //GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_F16_F32_L4, mul_mv_id_f16_f32_l4, has_simdgroup_reduction);
- //GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_F16_F16, mul_mv_id_f16_f16, has_simdgroup_reduction);
- GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_BF16_F32, mul_mv_id_bf16_f32, has_simdgroup_reduction && use_bfloat);
- GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_Q4_0_F32, mul_mv_id_q4_0_f32, has_simdgroup_reduction);
- GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_Q4_1_F32, mul_mv_id_q4_1_f32, has_simdgroup_reduction);
- GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_Q5_0_F32, mul_mv_id_q5_0_f32, has_simdgroup_reduction);
- GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_Q5_1_F32, mul_mv_id_q5_1_f32, has_simdgroup_reduction);
- GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_Q8_0_F32, mul_mv_id_q8_0_f32, has_simdgroup_reduction);
- GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_MXFP4_F32, mul_mv_id_mxfp4_f32, has_simdgroup_reduction);
- GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_Q2_K_F32, mul_mv_id_q2_K_f32, has_simdgroup_reduction);
- GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_Q3_K_F32, mul_mv_id_q3_K_f32, has_simdgroup_reduction);
- GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_Q4_K_F32, mul_mv_id_q4_K_f32, has_simdgroup_reduction);
- GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_Q5_K_F32, mul_mv_id_q5_K_f32, has_simdgroup_reduction);
- GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_Q6_K_F32, mul_mv_id_q6_K_f32, has_simdgroup_reduction);
- GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ2_XXS_F32, mul_mv_id_iq2_xxs_f32, has_simdgroup_reduction);
- GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ2_XS_F32, mul_mv_id_iq2_xs_f32, has_simdgroup_reduction);
- GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ3_XXS_F32, mul_mv_id_iq3_xxs_f32, has_simdgroup_reduction);
- GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ3_S_F32, mul_mv_id_iq3_s_f32, has_simdgroup_reduction);
- GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ2_S_F32, mul_mv_id_iq2_s_f32, has_simdgroup_reduction);
- GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ1_S_F32, mul_mv_id_iq1_s_f32, has_simdgroup_reduction);
- GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ1_M_F32, mul_mv_id_iq1_m_f32, has_simdgroup_reduction);
- GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ4_NL_F32, mul_mv_id_iq4_nl_f32, has_simdgroup_reduction);
- GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ4_XS_F32, mul_mv_id_iq4_xs_f32, has_simdgroup_reduction);
- GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_F32_F32, mul_mm_f32_f32, has_simdgroup_mm);
- GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_F16_F32, mul_mm_f16_f32, has_simdgroup_mm);
- GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_BF16_F32, mul_mm_bf16_f32, has_simdgroup_mm && use_bfloat);
- GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_Q4_0_F32, mul_mm_q4_0_f32, has_simdgroup_mm);
- GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_Q4_1_F32, mul_mm_q4_1_f32, has_simdgroup_mm);
- GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_Q5_0_F32, mul_mm_q5_0_f32, has_simdgroup_mm);
- GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_Q5_1_F32, mul_mm_q5_1_f32, has_simdgroup_mm);
- GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_Q8_0_F32, mul_mm_q8_0_f32, has_simdgroup_mm);
- GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_MXFP4_F32, mul_mm_mxfp4_f32, has_simdgroup_mm);
- GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_Q2_K_F32, mul_mm_q2_K_f32, has_simdgroup_mm);
- GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_Q3_K_F32, mul_mm_q3_K_f32, has_simdgroup_mm);
- GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_Q4_K_F32, mul_mm_q4_K_f32, has_simdgroup_mm);
- GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_Q5_K_F32, mul_mm_q5_K_f32, has_simdgroup_mm);
- GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_Q6_K_F32, mul_mm_q6_K_f32, has_simdgroup_mm);
- GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_IQ2_XXS_F32, mul_mm_iq2_xxs_f32, has_simdgroup_mm);
- GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_IQ2_XS_F32, mul_mm_iq2_xs_f32, has_simdgroup_mm);
- GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_IQ3_XXS_F32, mul_mm_iq3_xxs_f32, has_simdgroup_mm);
- GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_IQ3_S_F32, mul_mm_iq3_s_f32, has_simdgroup_mm);
- GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_IQ2_S_F32, mul_mm_iq2_s_f32, has_simdgroup_mm);
- GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_IQ1_S_F32, mul_mm_iq1_s_f32, has_simdgroup_mm);
- GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_IQ1_M_F32, mul_mm_iq1_m_f32, has_simdgroup_mm);
- GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_IQ4_NL_F32, mul_mm_iq4_nl_f32, has_simdgroup_mm);
- GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_IQ4_XS_F32, mul_mm_iq4_xs_f32, has_simdgroup_mm);
- GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_MAP0_F16_NE20_1, mul_mm_id_map0_f16_ne20_1, has_simdgroup_mm);
- GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_MAP0_F16_NE20_2, mul_mm_id_map0_f16_ne20_2, has_simdgroup_mm);
- GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_MAP0_F16_NE20_4, mul_mm_id_map0_f16_ne20_4, has_simdgroup_mm);
- GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_MAP0_F16_NE20_6, mul_mm_id_map0_f16_ne20_6, has_simdgroup_mm);
- GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_MAP0_F16_NE20_8, mul_mm_id_map0_f16_ne20_8, has_simdgroup_mm);
- GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_MAP0_F16_NE20_10, mul_mm_id_map0_f16_ne20_10, has_simdgroup_mm);
- GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_MAP0_F16_NE20_16, mul_mm_id_map0_f16_ne20_16, has_simdgroup_mm);
- GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_F32_F16, mul_mm_id_f32_f16, has_simdgroup_mm);
- GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_F16_F16, mul_mm_id_f16_f16, has_simdgroup_mm);
- GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_BF16_F16, mul_mm_id_bf16_f16, has_simdgroup_mm && use_bfloat);
- GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q4_0_F16, mul_mm_id_q4_0_f16, has_simdgroup_mm);
- GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q4_1_F16, mul_mm_id_q4_1_f16, has_simdgroup_mm);
- GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q5_0_F16, mul_mm_id_q5_0_f16, has_simdgroup_mm);
- GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q5_1_F16, mul_mm_id_q5_1_f16, has_simdgroup_mm);
- GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q8_0_F16, mul_mm_id_q8_0_f16, has_simdgroup_mm);
- GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_MXFP4_F16, mul_mm_id_mxfp4_f16, has_simdgroup_mm);
- GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q2_K_F16, mul_mm_id_q2_K_f16, has_simdgroup_mm);
- GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q3_K_F16, mul_mm_id_q3_K_f16, has_simdgroup_mm);
- GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q4_K_F16, mul_mm_id_q4_K_f16, has_simdgroup_mm);
- GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q5_K_F16, mul_mm_id_q5_K_f16, has_simdgroup_mm);
- GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q6_K_F16, mul_mm_id_q6_K_f16, has_simdgroup_mm);
- GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ2_XXS_F16, mul_mm_id_iq2_xxs_f16, has_simdgroup_mm);
- GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ2_XS_F16, mul_mm_id_iq2_xs_f16, has_simdgroup_mm);
- GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ3_XXS_F16, mul_mm_id_iq3_xxs_f16, has_simdgroup_mm);
- GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ3_S_F16, mul_mm_id_iq3_s_f16, has_simdgroup_mm);
- GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ2_S_F16, mul_mm_id_iq2_s_f16, has_simdgroup_mm);
- GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ1_S_F16, mul_mm_id_iq1_s_f16, has_simdgroup_mm);
- GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ1_M_F16, mul_mm_id_iq1_m_f16, has_simdgroup_mm);
- GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ4_NL_F16, mul_mm_id_iq4_nl_f16, has_simdgroup_mm);
- GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ4_XS_F16, mul_mm_id_iq4_xs_f16, has_simdgroup_mm);
- GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_ROPE_NORM_F32, rope_norm_f32, true);
- GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_ROPE_NORM_F16, rope_norm_f16, true);
- GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_ROPE_MULTI_F32, rope_multi_f32, true);
- GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_ROPE_MULTI_F16, rope_multi_f16, true);
- GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_ROPE_VISION_F32, rope_vision_f32, true);
- GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_ROPE_VISION_F16, rope_vision_f16, true);
- GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_ROPE_NEOX_F32, rope_neox_f32, true);
- GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_ROPE_NEOX_F16, rope_neox_f16, true);
- GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_IM2COL_F16, im2col_f16, true);
- GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_IM2COL_F32, im2col_f32, true);
- GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_IM2COL_EXT_F16, im2col_ext_f16, true);
- GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_IM2COL_EXT_F32, im2col_ext_f32, true);
- GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_CONV_TRANSPOSE_1D_F32_F32, conv_transpose_1d_f32_f32, true);
- GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_CONV_TRANSPOSE_1D_F16_F32, conv_transpose_1d_f16_f32, true);
- GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_UPSCALE_F32, upscale_f32, true);
- GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_PAD_F32, pad_f32, true);
- GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_PAD_REFLECT_1D_F32, pad_reflect_1d_f32, true);
- GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_TIMESTEP_EMBEDDING_F32, timestep_embedding_f32, true);
- GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_ARANGE_F32, arange_f32, true);
- GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_ARGSORT_F32_I32_ASC, argsort_f32_i32_asc, true);
- GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_ARGSORT_F32_I32_DESC, argsort_f32_i32_desc, true);
- GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_LEAKY_RELU_F32, leaky_relu_f32, true);
- GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_CPY_F32_F32, cpy_f32_f32, true);
- GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_CPY_F32_F16, cpy_f32_f16, true);
- GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_CPY_F32_BF16, cpy_f32_bf16, use_bfloat);
- GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_CPY_F16_F32, cpy_f16_f32, true);
- GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_CPY_F16_F16, cpy_f16_f16, true);
- GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_CPY_BF16_F32, cpy_bf16_f32, use_bfloat);
- GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_CPY_BF16_BF16, cpy_bf16_bf16, use_bfloat);
- GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_CPY_F32_I32, cpy_f32_i32, true);
- GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_CPY_I32_F32, cpy_i32_f32, true);
- GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_CPY_F32_Q8_0, cpy_f32_q8_0, true);
- GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_CPY_F32_Q4_0, cpy_f32_q4_0, true);
- GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_CPY_F32_Q4_1, cpy_f32_q4_1, true);
- GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_CPY_F32_Q5_0, cpy_f32_q5_0, true);
- GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_CPY_F32_Q5_1, cpy_f32_q5_1, true);
- GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_CPY_F32_IQ4_NL, cpy_f32_iq4_nl, true);
- GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_CPY_Q4_0_F32, cpy_q4_0_f32, true);
- GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_CPY_Q4_0_F16, cpy_q4_0_f16, true);
- GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_CPY_Q4_1_F32, cpy_q4_1_f32, true);
- GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_CPY_Q4_1_F16, cpy_q4_1_f16, true);
- GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_CPY_Q5_0_F32, cpy_q5_0_f32, true);
- GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_CPY_Q5_0_F16, cpy_q5_0_f16, true);
- GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_CPY_Q5_1_F32, cpy_q5_1_f32, true);
- GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_CPY_Q5_1_F16, cpy_q5_1_f16, true);
- GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_CPY_Q8_0_F32, cpy_q8_0_f32, true);
- GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_CPY_Q8_0_F16, cpy_q8_0_f16, true);
- GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_CONCAT, concat, true);
- GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_SQR, sqr, true);
- GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_SQRT, sqrt, true);
- GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_SIN, sin, true);
- GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_COS, cos, true);
- GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_NEG, neg, true);
- GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_REGLU, reglu, true);
- GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GEGLU, geglu, true);
- GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_SWIGLU, swiglu, true);
- GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_SWIGLU_OAI, swiglu_oai, true);
- GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GEGLU_ERF, geglu_erf, true);
- GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GEGLU_QUICK, geglu_quick, true);
- GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_SUM_ROWS, sum_rows, has_simdgroup_reduction);
- GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MEAN, mean, has_simdgroup_reduction);
- GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_ARGMAX, argmax, has_simdgroup_reduction);
- GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_POOL_2D_AVG_F32, pool_2d_avg_f32, true);
- GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_POOL_2D_MAX_F32, pool_2d_max_f32, true);
- }
-
- ctx->kernels_ext = [[NSMutableDictionary alloc] init];
-
- return ctx;
-}
-
-static id<MTLComputePipelineState> ggml_metal_get_kernel(struct ggml_backend_metal_context * ctx, const char * name) {
- NSString * key = [NSString stringWithUTF8String:name];
-
- ggml_metal_kernel_wrapper * obj = [ctx->kernels_ext objectForKey:key];
- if (obj) {
- return obj.kernel.pipeline;
- }
-
- return nil;
-}
-
-static id<MTLComputePipelineState> ggml_metal_compile_kernel(ggml_backend_t backend, const char * base, const char * name, MTLFunctionConstantValues * cv) {
- struct ggml_backend_metal_context * ctx = backend->context;
- struct ggml_backend_metal_device_context * ctx_dev = backend->device->context;
-
- id<MTLComputePipelineState> res = nil;
-
- @autoreleasepool {
- NSError * error = nil;
-
- NSString * base_func = [NSString stringWithUTF8String:base];
-
- GGML_LOG_DEBUG("%s: compiling kernel: base = '%s', name = '%s'\n", __func__, base, name);
-
- // TODO: make sure it is thread-safe to compile kernels in parallel
- id<MTLFunction> metal_function = [ctx_dev->mtl_library newFunctionWithName:base_func constantValues:cv error:&error];
- if (!metal_function) {
- GGML_LOG_ERROR("%s: error: %s\n", __func__, [[error description] UTF8String]);
-
- return nil;
- }
-
- struct ggml_metal_kernel kernel = {
- /*.pipeline =*/ [ctx_dev->mtl_device newComputePipelineStateWithFunction:metal_function error:&error],
- };
-
- ggml_metal_kernel_wrapper * obj = [[ggml_metal_kernel_wrapper alloc] init];
- obj.kernel = kernel;
-
- res = obj.kernel.pipeline;
-
- NSString * key = [NSString stringWithUTF8String:name];
- [ctx->kernels_ext setObject:obj forKey:key];
-
- [metal_function release];
- [obj release];
-
- GGML_LOG_DEBUG("%s: loaded %-40s %16p | th_max = %4d | th_width = %4d\n", __func__, name, (void *) kernel.pipeline,
- (int) kernel.pipeline.maxTotalThreadsPerThreadgroup,
- (int) kernel.pipeline.threadExecutionWidth);
- }
-
- return res;
-}
-
-// tokens per expert
-static size_t ggml_metal_mul_mat_id_extra_tpe(const struct ggml_tensor * op) {
- assert(op->op == GGML_OP_MUL_MAT_ID);
-
- const int64_t ne02 = op->src[0]->ne[2]; // n_expert
-
- return ggml_type_size(GGML_TYPE_I32)*ne02;
-}
-
-// id map [n_tokens, n_expert]
-static size_t ggml_metal_mul_mat_id_extra_ids(const struct ggml_tensor * op) {
- assert(op->op == GGML_OP_MUL_MAT_ID);
-
- const int64_t ne02 = op->src[0]->ne[2]; // n_expert
- const int64_t ne21 = op->src[2]->ne[1]; // n_token
-
- return ggml_type_size(GGML_TYPE_I32)*ne02*ne21;
-}
-
-// return true if we should use the FA vector kernel for this op
-static bool ggml_metal_flash_attn_ext_use_vec(const struct ggml_tensor * op) {
- assert(op->op == GGML_OP_FLASH_ATTN_EXT);
-
- const int64_t ne00 = op->src[0]->ne[0]; // head size
- const int64_t ne01 = op->src[0]->ne[1]; // batch size
-
- // use vec kernel if the batch size is small and if the head size is supported
- return (ne01 < 20) && (ne00 % 32 == 0);
-}
-
-static size_t ggml_metal_flash_attn_ext_extra_tmp(const struct ggml_tensor * op) {
- assert(op->op == GGML_OP_FLASH_ATTN_EXT);
-
- const int64_t nwg = 32;
-
- const int64_t ne01 = op->src[0]->ne[1];
- const int64_t ne02 = op->src[0]->ne[2];
- const int64_t ne03 = op->src[0]->ne[3];
- const int64_t ne20 = op->src[2]->ne[0];
-
- // temp buffer for writing the results from each workgroup
- // - ne20: the size of the Value head
- // - + 2: the S and M values for each intermediate result
- return ggml_type_size(GGML_TYPE_F32)*(ne01*ne02*ne03*nwg*(ne20 + 2));
-}
-
-static id<MTLComputePipelineState> ggml_metal_get_pipeline_flash_attn_ext(
- ggml_backend_t backend, struct ggml_tensor * op,
- bool has_mask,
- bool has_sinks,
- bool has_bias,
- bool has_scap,
- int32_t nsg) {
- struct ggml_backend_metal_context * ctx = backend->context;
-
- char base[256];
- char name[256];
-
- @autoreleasepool {
- const int32_t dk = (int32_t) op->src[1]->ne[0];
- const int32_t dv = (int32_t) op->src[2]->ne[0];
-
- const int32_t ns10 = op->src[1]->nb[1]/op->src[1]->nb[0];
- const int32_t ns20 = op->src[2]->nb[1]/op->src[2]->nb[0];
-
- snprintf(base, 256, "kernel_%s_%s_dk%d_dv%d",
- "flash_attn_ext",
- ggml_type_name(op->src[1]->type),
- dk,
- dv);
-
- snprintf(name, 256, "kernel_%s_%s_dk%d_dv%d_mask=%d_sinks=%d_bias=%d_scap=%d_ns10=%d_ns20=%d_nsg=%d",
- "flash_attn_ext",
- ggml_type_name(op->src[1]->type),
- dk,
- dv,
- has_mask,
- has_sinks,
- has_bias,
- has_scap,
- ns10,
- ns20,
- nsg);
-
- id<MTLComputePipelineState> res = ggml_metal_get_kernel(ctx, name);
- if (res) {
- // kernel found
- return res;
- }
-
- MTLFunctionConstantValues * cv = [[MTLFunctionConstantValues alloc] init];
-
- [cv setConstantValue:&has_mask type:MTLDataTypeBool atIndex:FC_FLASH_ATTN_EXT + 0];
- [cv setConstantValue:&has_sinks type:MTLDataTypeBool atIndex:FC_FLASH_ATTN_EXT + 1];
- [cv setConstantValue:&has_bias type:MTLDataTypeBool atIndex:FC_FLASH_ATTN_EXT + 2];
- [cv setConstantValue:&has_scap type:MTLDataTypeBool atIndex:FC_FLASH_ATTN_EXT + 3];
-
- [cv setConstantValue:&ns10 type:MTLDataTypeInt atIndex:FC_FLASH_ATTN_EXT + 20];
- [cv setConstantValue:&ns20 type:MTLDataTypeInt atIndex:FC_FLASH_ATTN_EXT + 21];
- [cv setConstantValue:&nsg type:MTLDataTypeInt atIndex:FC_FLASH_ATTN_EXT + 22];
-
- res = ggml_metal_compile_kernel(backend, base, name, cv);
-
- [cv release];
-
- return res;
- }
-}
-
-static id<MTLComputePipelineState> ggml_metal_get_pipeline_flash_attn_ext_vec(
- ggml_backend_t backend, struct ggml_tensor * op,
- bool has_mask,
- bool has_sinks,
- bool has_bias,
- bool has_scap,
- int32_t nsg,
- int32_t nwg) {
- struct ggml_backend_metal_context * ctx = backend->context;
-
- char base[256];
- char name[256];
-
- @autoreleasepool {
- const int32_t dk = (int32_t) op->src[1]->ne[0];
- const int32_t dv = (int32_t) op->src[2]->ne[0];
-
- const int32_t ns10 = op->src[1]->nb[1]/op->src[1]->nb[0];
- const int32_t ns20 = op->src[2]->nb[1]/op->src[2]->nb[0];
-
- snprintf(base, 256, "kernel_%s_%s_dk%d_dv%d",
- "flash_attn_ext_vec",
- ggml_type_name(op->src[1]->type),
- dk,
- dv);
-
- snprintf(name, 256, "kernel_%s_%s_dk%d_dv%d_mask=%d_sink=%d_bias=%d_softcap=%d_ns10=%d_ns20=%d_nsg=%d_nwg=%d",
- "flash_attn_ext_vec",
- ggml_type_name(op->src[1]->type),
- dk,
- dv,
- has_mask,
- has_sinks,
- has_bias,
- has_scap,
- ns10,
- ns20,
- nsg, nwg);
-
- id<MTLComputePipelineState> res = ggml_metal_get_kernel(ctx, name);
- if (res) {
- // kernel found
- return res;
- }
-
- MTLFunctionConstantValues * cv = [[MTLFunctionConstantValues alloc] init];
-
- [cv setConstantValue:&has_mask type:MTLDataTypeBool atIndex:FC_FLASH_ATTN_EXT_VEC + 0];
- [cv setConstantValue:&has_sinks type:MTLDataTypeBool atIndex:FC_FLASH_ATTN_EXT_VEC + 1];
- [cv setConstantValue:&has_bias type:MTLDataTypeBool atIndex:FC_FLASH_ATTN_EXT_VEC + 2];
- [cv setConstantValue:&has_scap type:MTLDataTypeBool atIndex:FC_FLASH_ATTN_EXT_VEC + 3];
-
- [cv setConstantValue:&ns10 type:MTLDataTypeInt atIndex:FC_FLASH_ATTN_EXT_VEC + 20];
- [cv setConstantValue:&ns20 type:MTLDataTypeInt atIndex:FC_FLASH_ATTN_EXT_VEC + 21];
- [cv setConstantValue:&nsg type:MTLDataTypeInt atIndex:FC_FLASH_ATTN_EXT_VEC + 22];
- [cv setConstantValue:&nwg type:MTLDataTypeInt atIndex:FC_FLASH_ATTN_EXT_VEC + 23];
-
- res = ggml_metal_compile_kernel(backend, base, name, cv);
-
- [cv release];
-
- return res;
- }
-}
-
-static id<MTLComputePipelineState> ggml_metal_get_pipeline_flash_attn_ext_vec_reduce(
- ggml_backend_t backend, struct ggml_tensor * op,
- int32_t dv,
- int32_t nwg) {
- struct ggml_backend_metal_context * ctx = backend->context;
-
- char base[256];
- char name[256];
-
- @autoreleasepool {
- snprintf(base, 256, "kernel_flash_attn_ext_vec_reduce");
- snprintf(name, 256, "kernel_flash_attn_ext_vec_reduce_dv=%d_nwg=%d", dv, nwg);
-
- id<MTLComputePipelineState> res = ggml_metal_get_kernel(ctx, name);
- if (res) {
- // kernel found
- return res;
- }
-
- MTLFunctionConstantValues * cv = [[MTLFunctionConstantValues alloc] init];
-
- [cv setConstantValue:&dv type:MTLDataTypeInt atIndex:FC_FLASH_ATTN_EXT_VEC_REDUCE + 0];
- [cv setConstantValue:&nwg type:MTLDataTypeInt atIndex:FC_FLASH_ATTN_EXT_VEC_REDUCE + 1];
-
- res = ggml_metal_compile_kernel(backend, base, name, cv);
-
- [cv release];
-
- return res;
- }
-
- GGML_UNUSED(op);
-}
-
-static id<MTLComputePipelineState> ggml_metal_get_pipeline_bin(
- ggml_backend_t backend, enum ggml_op op,
- int32_t n_fuse,
- bool row) {
- struct ggml_backend_metal_context * ctx = backend->context;
-
- char base[256];
- char name[256];
-
- @autoreleasepool {
- const char * op_str = "undefined";
- switch (op) {
- case GGML_OP_ADD: op_str = "add"; break;
- case GGML_OP_SUB: op_str = "sub"; break;
- case GGML_OP_MUL: op_str = "mul"; break;
- case GGML_OP_DIV: op_str = "div"; break;
- default: GGML_ABORT("fatal error");
- };
-
- if (row) {
- snprintf(base, 256, "kernel_%s_row_c4_fuse_%d", op_str, n_fuse);
- } else {
- snprintf(base, 256, "kernel_%s_fuse_%d", op_str, n_fuse);
- }
-
- snprintf(name, 256, "%s", base);
-
- id<MTLComputePipelineState> res = ggml_metal_get_kernel(ctx, name);
- if (res) {
- // kernel found
- return res;
- }
-
- return ggml_metal_compile_kernel(backend, base, name, nil);
- }
-}
-
-static id<MTLComputePipelineState> ggml_metal_get_pipeline_rms_norm(
- ggml_backend_t backend, struct ggml_tensor * op,
- int32_t n_fuse) {
- struct ggml_backend_metal_context * ctx = backend->context;
-
- char base[256];
- char name[256];
-
- @autoreleasepool {
- switch (n_fuse) {
- case 1: snprintf(base, 256, "kernel_rms_norm"); break;
- case 2: snprintf(base, 256, "kernel_rms_norm_mul"); break;
- case 3: snprintf(base, 256, "kernel_rms_norm_mul_add"); break;
- default: GGML_ABORT("fatal error");
- }
-
- snprintf(name, 256, "%s", base);
-
- id<MTLComputePipelineState> res = ggml_metal_get_kernel(ctx, name);
- if (res) {
- // kernel found
- return res;
- }
-
- return ggml_metal_compile_kernel(backend, base, name, nil);
- }
-
- GGML_UNUSED(op);
-}
-
-static void ggml_metal_free(struct ggml_backend_metal_context * ctx) {
- GGML_LOG_INFO("%s: deallocating\n", __func__);
-
- for (int i = 0; i < GGML_METAL_KERNEL_TYPE_COUNT; ++i) {
- [ctx->kernels[i].pipeline release];
- }
-
- if (ctx->kernels_ext) {
- [ctx->kernels_ext release];
- ctx->kernels_ext = nil;
- }
-
- Block_release(ctx->encode_async);
-
- //[ctx->queue release]; // [TAG_QUEUE_PER_BACKEND]
-
- for (int i = 0; i < GGML_METAL_MAX_COMMAND_BUFFERS; ++i) {
- if (ctx->cmd_bufs[i].obj) {
- [ctx->cmd_bufs[i].obj release];
- }
-
- if (ctx->cmd_bufs[i].mem_ranges) {
- ggml_mem_ranges_free(ctx->cmd_bufs[i].mem_ranges);
- }
- }
-
- [ctx->cmd_bufs_ext removeAllObjects];
- [ctx->cmd_bufs_ext release];
-
- dispatch_release(ctx->d_queue);
-
- free(ctx);
-}
-
-// temporarily defined here for compatibility between ggml-backend and the old API
-
-struct ggml_backend_metal_buffer {
- void * data;
- size_t size;
-
- id<MTLBuffer> metal;
-};
-
-struct ggml_backend_metal_buffer_context {
- void * all_data;
- size_t all_size;
-
- // if false, the Metal buffer data is allocated in private GPU memory and is not shared with the host
- bool is_shared;
-
- // multiple buffers are used only to avoid the maximum buffer size limitation when using mmap
- int n_buffers;
- struct ggml_backend_metal_buffer buffers[GGML_METAL_MAX_BUFFERS];
-
- // optional MTLResidencySet
- // note: cannot use explicity "id<MTLResidencySet>" here because it is not available on certain OSes
- id rset;
-
- // pointers to global device objects
- id<MTLDevice> device;
- id<MTLCommandQueue> queue;
-};
-
-// rset init
-static bool ggml_backend_metal_buffer_rset_init(
- struct ggml_backend_metal_buffer_context * ctx,
- struct ggml_backend_metal_device_context * ctx_dev,
- id<MTLDevice> device) {
- ctx->rset = nil;
-
- if (!ctx_dev->has_residency_sets) {
- return true;
- }
-
-#if defined(GGML_METAL_HAS_RESIDENCY_SETS)
- if (@available(macOS 15.0, iOS 18.0, tvOS 18.0, visionOS 2.0, *)) {
- MTLResidencySetDescriptor * desc = [[MTLResidencySetDescriptor alloc] init];
- desc.label = @"ggml_backend_metal";
- desc.initialCapacity = ctx->n_buffers;
-
- NSError * error;
- ctx->rset = [device newResidencySetWithDescriptor:desc error:&error];
- if (error) {
- GGML_LOG_ERROR("%s: error: %s\n", __func__, [[error description] UTF8String]);
- [desc release];
- return false;
- }
-
- [desc release];
-
- for (int i = 0; i < ctx->n_buffers; i++) {
- [ctx->rset addAllocation:ctx->buffers[i].metal];
- }
-
- [ctx->rset commit];
- [ctx->rset requestResidency];
-
- return true;
- }
-#else
- GGML_UNUSED(ctx_dev);
- GGML_UNUSED(device);
-#endif
-
- return true;
-}
-
-// rset free
-static void ggml_backend_metal_buffer_rset_free(struct ggml_backend_metal_buffer_context * ctx) {
-#if defined(GGML_METAL_HAS_RESIDENCY_SETS)
- if (@available(macOS 15.0, iOS 18.0, tvOS 18.0, visionOS 2.0, *)) {
- if (ctx->rset) {
- [ctx->rset endResidency];
- [ctx->rset removeAllAllocations];
- [ctx->rset release];
- }
- }
-#else
- GGML_UNUSED(ctx);
-#endif
-}
-
-// finds the Metal buffer that contains the tensor data on the GPU device
-// the assumption is that there is 1-to-1 mapping between the host and device memory buffers, so we can find the
-// Metal buffer based on the host memory pointer
-//
-static id<MTLBuffer> ggml_metal_get_buffer(const struct ggml_tensor * t, size_t * offs) {
- //GGML_LOG_INFO("%s: data tensor '%16s', offs_data = %8ld, offs_eval = %8ld, offs_cach = %8ld\n", __func__, t->name, offs_data, offs_eval, offs_cach);
-
- const int64_t tsize = ggml_nbytes(t);
-
- ggml_backend_buffer_t buffer = t->view_src ? t->view_src->buffer : t->buffer;
-
- struct ggml_backend_metal_buffer_context * buf_ctx = (struct ggml_backend_metal_buffer_context *) buffer->context;
-
- // find the view that contains the tensor fully
- for (int i = 0; i < buf_ctx->n_buffers; ++i) {
- const int64_t ioffs = (int64_t) t->data - (int64_t) buf_ctx->buffers[i].data;
-
- //GGML_LOG_INFO("ioffs = %10ld, tsize = %10ld, sum = %10ld, buf_ctx->buffers[%d].size = %10ld\n", ioffs, tsize, ioffs + tsize, i, buf_ctx->buffers[i].size);
- if (ioffs >= 0 && ioffs + tsize <= (int64_t) buf_ctx->buffers[i].size) {
- *offs = (size_t) ioffs;
-
- //GGML_LOG_INFO("%s: tensor '%16s', offs = %8ld\n", __func__, t->name, *offs);
-
- return buf_ctx->buffers[i].metal;
- }
- }
-
- GGML_LOG_ERROR("%s: error: tensor '%s' buffer is nil\n", __func__, t->name);
-
- return nil;
-}
-
-static bool ggml_metal_supports_op(const struct ggml_backend_metal_device_context * ctx_dev, const struct ggml_tensor * op) {
- const bool has_simdgroup_mm = ctx_dev->has_simdgroup_mm;
- const bool has_simdgroup_reduction = ctx_dev->has_simdgroup_reduction;
- const bool use_bfloat = ctx_dev->use_bfloat;
-
- if (!use_bfloat) {
- if (op->type == GGML_TYPE_BF16) {
- return false;
- }
-
- for (size_t i = 0, n = 3; i < n; ++i) {
- if (op->src[i] != NULL && op->src[i]->type == GGML_TYPE_BF16) {
- return false;
- }
- }
- }
-
- switch (op->op) {
- case GGML_OP_UNARY:
- switch (ggml_get_unary_op(op)) {
- case GGML_UNARY_OP_TANH:
- case GGML_UNARY_OP_RELU:
- case GGML_UNARY_OP_SIGMOID:
- case GGML_UNARY_OP_GELU:
- case GGML_UNARY_OP_GELU_ERF:
- case GGML_UNARY_OP_GELU_QUICK:
- case GGML_UNARY_OP_SILU:
- case GGML_UNARY_OP_ELU:
- case GGML_UNARY_OP_NEG:
- case GGML_UNARY_OP_ABS:
- case GGML_UNARY_OP_SGN:
- case GGML_UNARY_OP_STEP:
- case GGML_UNARY_OP_HARDSWISH:
- case GGML_UNARY_OP_HARDSIGMOID:
- case GGML_UNARY_OP_EXP:
- return ggml_is_contiguous(op->src[0]) && op->src[0]->type == GGML_TYPE_F32;
- default:
- return false;
- }
- case GGML_OP_GLU:
- switch (ggml_get_glu_op(op)) {
- case GGML_GLU_OP_REGLU:
- case GGML_GLU_OP_GEGLU:
- case GGML_GLU_OP_SWIGLU:
- case GGML_GLU_OP_SWIGLU_OAI:
- case GGML_GLU_OP_GEGLU_ERF:
- case GGML_GLU_OP_GEGLU_QUICK:
- return ggml_is_contiguous_1(op->src[0]) && op->src[0]->type == GGML_TYPE_F32;
- default:
- return false;
- }
- case GGML_OP_NONE:
- case GGML_OP_RESHAPE:
- case GGML_OP_VIEW:
- case GGML_OP_TRANSPOSE:
- case GGML_OP_PERMUTE:
- case GGML_OP_CONCAT:
- return true;
- case GGML_OP_ADD:
- case GGML_OP_SUB:
- case GGML_OP_MUL:
- case GGML_OP_DIV:
- case GGML_OP_ADD_ID:
- return op->src[0]->type == GGML_TYPE_F32;
- case GGML_OP_ACC:
- case GGML_OP_REPEAT:
- case GGML_OP_SCALE:
- case GGML_OP_CONV_TRANSPOSE_1D:
- return true;
- case GGML_OP_CLAMP:
- return op->src[0]->type == GGML_TYPE_F32;
- case GGML_OP_SQR:
- case GGML_OP_SQRT:
- case GGML_OP_SIN:
- case GGML_OP_COS:
- return ggml_is_contiguous(op->src[0]) && op->src[0]->type == GGML_TYPE_F32;
- case GGML_OP_LOG:
- return false; // TODO: implement
- case GGML_OP_SUM_ROWS:
- case GGML_OP_MEAN:
- case GGML_OP_SOFT_MAX:
- case GGML_OP_GROUP_NORM:
- return has_simdgroup_reduction && ggml_is_contiguous_rows(op->src[0]);
- case GGML_OP_RMS_NORM:
- case GGML_OP_L2_NORM:
- return has_simdgroup_reduction && (op->ne[0] % 4 == 0 && ggml_is_contiguous_1(op->src[0]));
- case GGML_OP_ARGMAX:
- return has_simdgroup_reduction;
- case GGML_OP_NORM:
- return has_simdgroup_reduction && (op->ne[0] % 4 == 0 && ggml_is_contiguous_1(op->src[0]));
- case GGML_OP_ROPE:
- return true;
- case GGML_OP_IM2COL:
- return ggml_is_contiguous(op->src[1]) && op->src[1]->type == GGML_TYPE_F32 && (op->type == GGML_TYPE_F16 || op->type == GGML_TYPE_F32);
- case GGML_OP_POOL_1D:
- return false;
- case GGML_OP_UPSCALE:
- return op->src[0]->type == GGML_TYPE_F32 && op->op_params[0] == GGML_SCALE_MODE_NEAREST;
- case GGML_OP_POOL_2D:
- return op->src[0]->type == GGML_TYPE_F32;
- case GGML_OP_PAD:
- return (ggml_get_op_params_i32(op, 0) == 0) && (ggml_get_op_params_i32(op, 2) == 0) &&
- (ggml_get_op_params_i32(op, 4) == 0) && (ggml_get_op_params_i32(op, 6) == 0);
- case GGML_OP_PAD_REFLECT_1D:
- case GGML_OP_TIMESTEP_EMBEDDING:
- case GGML_OP_ARGSORT:
- case GGML_OP_LEAKY_RELU:
- return op->src[0]->type == GGML_TYPE_F32;
- case GGML_OP_ARANGE:
- return true;
- case GGML_OP_FLASH_ATTN_EXT:
- // for new head sizes, add checks here
- if (op->src[0]->ne[0] != 40 &&
- op->src[0]->ne[0] != 64 &&
- op->src[0]->ne[0] != 80 &&
- op->src[0]->ne[0] != 96 &&
- op->src[0]->ne[0] != 112 &&
- op->src[0]->ne[0] != 128 &&
- op->src[0]->ne[0] != 192 &&
- op->src[0]->ne[0] != 256) {
- return false;
- }
- if (op->src[0]->ne[0] == 576) {
- // DeepSeek sizes
- // TODO: disabled for now, until optmized
- return false;
- }
- if (op->src[1]->type != op->src[2]->type) {
- return false;
- }
- return has_simdgroup_mm; // TODO: over-restricted for vec-kernels
- case GGML_OP_SSM_CONV:
- case GGML_OP_SSM_SCAN:
- return has_simdgroup_reduction;
- case GGML_OP_RWKV_WKV6:
- case GGML_OP_RWKV_WKV7:
- return true;
- case GGML_OP_MUL_MAT:
- case GGML_OP_MUL_MAT_ID:
- return has_simdgroup_reduction &&
- (op->src[0]->type != GGML_TYPE_F32 || op->src[1]->type == GGML_TYPE_F32);
- case GGML_OP_CPY:
- case GGML_OP_DUP:
- case GGML_OP_CONT:
- {
- switch (op->src[0]->type) {
- case GGML_TYPE_F32:
- switch (op->type) {
- case GGML_TYPE_F32:
- case GGML_TYPE_F16:
- case GGML_TYPE_BF16:
- case GGML_TYPE_Q8_0:
- case GGML_TYPE_Q4_0:
- case GGML_TYPE_Q4_1:
- case GGML_TYPE_Q5_0:
- case GGML_TYPE_Q5_1:
- case GGML_TYPE_IQ4_NL:
- case GGML_TYPE_I32:
- return true;
- default:
- return false;
- }
- case GGML_TYPE_F16:
- switch (op->type) {
- case GGML_TYPE_F32:
- case GGML_TYPE_F16:
- return true;
- default:
- return false;
- }
- case GGML_TYPE_BF16:
- switch (op->type) {
- case GGML_TYPE_F32:
- case GGML_TYPE_BF16:
- return true;
- default:
- return false;
- }
- case GGML_TYPE_Q4_0:
- case GGML_TYPE_Q4_1:
- case GGML_TYPE_Q5_0:
- case GGML_TYPE_Q5_1:
- case GGML_TYPE_Q8_0:
- switch (op->type) {
- case GGML_TYPE_F32:
- case GGML_TYPE_F16:
- return true;
- default:
- return false;
- }
- case GGML_TYPE_I32:
- return op->type == GGML_TYPE_F32;
- default:
- return false;
- };
- }
- case GGML_OP_DIAG_MASK_INF:
- case GGML_OP_GET_ROWS:
- {
- return op->ne[3] == 1;
- }
- case GGML_OP_SET_ROWS:
- {
- if (op->src[0]->type != GGML_TYPE_F32) {
- return false;
- }
-
- switch (op->type) {
- case GGML_TYPE_F32:
- case GGML_TYPE_F16:
- case GGML_TYPE_BF16:
- case GGML_TYPE_Q8_0:
- case GGML_TYPE_Q4_0:
- case GGML_TYPE_Q4_1:
- case GGML_TYPE_Q5_0:
- case GGML_TYPE_Q5_1:
- case GGML_TYPE_IQ4_NL:
- return true;
- default:
- return false;
- };
- }
- default:
- return false;
- }
-}
-
-struct ggml_metal_encode_context {
- ggml_backend_t backend;
-
- id<MTLComputeCommandEncoder> encoder;
-
- struct ggml_mem_ranges * mem_ranges;
-};
-
-static bool ggml_metal_encode_concurrency_reset(struct ggml_metal_encode_context * ctx) {
- if (!ctx->mem_ranges) {
- return true;
- }
-
- [ctx->encoder memoryBarrierWithScope:MTLBarrierScopeBuffers];
-
- ggml_mem_ranges_reset(ctx->mem_ranges);
-
- return true;
-}
-
-static bool ggml_metal_encode_concurrency_check(struct ggml_metal_encode_context * ctx, const struct ggml_tensor * node) {
- if (!ctx->mem_ranges) {
- return false;
- }
-
- return ggml_mem_ranges_check(ctx->mem_ranges, node);
-}
-
-static bool ggml_metal_encode_concurrency_add(struct ggml_metal_encode_context * ctx, const struct ggml_tensor * node) {
- if (!ctx->mem_ranges) {
- return true;
- }
-
- return ggml_mem_ranges_add(ctx->mem_ranges, node);
-}
-
-static int ggml_metal_encode_node(struct ggml_metal_encode_context * ctx_enc, int idx, int idx_end) {
- ggml_backend_t backend = ctx_enc->backend;
-
- id<MTLComputeCommandEncoder> encoder = ctx_enc->encoder;
-
- struct ggml_backend_metal_context * ctx = backend->context;
- struct ggml_backend_metal_device_context * ctx_dev = backend->device->context;
-
- struct ggml_cgraph * gf = ctx->gf;
-
- enum ggml_op ops[8];
-
- struct ggml_tensor ** nodes = ggml_graph_nodes(gf) + idx;
- struct ggml_tensor * node = nodes[0];
-
- //GGML_LOG_INFO("%s: encoding node %3d, op = %8s\n", __func__, idx, ggml_op_name(node->op));
-
- struct ggml_tensor * src0 = node->src[0];
- struct ggml_tensor * src1 = node->src[1];
- struct ggml_tensor * src2 = node->src[2];
- struct ggml_tensor * dst = node;
-
- if (ggml_is_empty(dst)) {
- return 1;
- }
-
- switch (dst->op) {
- case GGML_OP_NONE:
- case GGML_OP_RESHAPE:
- case GGML_OP_VIEW:
- case GGML_OP_TRANSPOSE:
- case GGML_OP_PERMUTE:
- {
- // noop -> next node
- } return 1;
- default:
- {
- } break;
- }
-
- if (!ggml_metal_supports_op(ctx_dev, dst)) {
- GGML_LOG_ERROR("%s: error: unsupported op '%s'\n", __func__, ggml_op_desc(dst));
- GGML_ABORT("unsupported op");
- }
-
- const int64_t ne00 = src0 ? src0->ne[0] : 0;
- const int64_t ne01 = src0 ? src0->ne[1] : 0;
- const int64_t ne02 = src0 ? src0->ne[2] : 0;
- const int64_t ne03 = src0 ? src0->ne[3] : 0;
-
- const uint64_t nb00 = src0 ? src0->nb[0] : 0;
- const uint64_t nb01 = src0 ? src0->nb[1] : 0;
- const uint64_t nb02 = src0 ? src0->nb[2] : 0;
- const uint64_t nb03 = src0 ? src0->nb[3] : 0;
-
- const int64_t ne10 = src1 ? src1->ne[0] : 0;
- const int64_t ne11 = src1 ? src1->ne[1] : 0;
- const int64_t ne12 = src1 ? src1->ne[2] : 0;
- const int64_t ne13 = src1 ? src1->ne[3] : 0;
-
- const uint64_t nb10 = src1 ? src1->nb[0] : 0;
- const uint64_t nb11 = src1 ? src1->nb[1] : 0;
- const uint64_t nb12 = src1 ? src1->nb[2] : 0;
- const uint64_t nb13 = src1 ? src1->nb[3] : 0;
-
- const int64_t ne20 = src2 ? src2->ne[0] : 0;
- const int64_t ne21 = src2 ? src2->ne[1] : 0;
- const int64_t ne22 = src2 ? src2->ne[2] : 0; GGML_UNUSED(ne22);
- const int64_t ne23 = src2 ? src2->ne[3] : 0; GGML_UNUSED(ne23);
-
- const uint64_t nb20 = src2 ? src2->nb[0] : 0; GGML_UNUSED(nb20);
- const uint64_t nb21 = src2 ? src2->nb[1] : 0;
- const uint64_t nb22 = src2 ? src2->nb[2] : 0;
- const uint64_t nb23 = src2 ? src2->nb[3] : 0; GGML_UNUSED(nb23);
-
- const int64_t ne0 = dst ? dst->ne[0] : 0;
- const int64_t ne1 = dst ? dst->ne[1] : 0;
- const int64_t ne2 = dst ? dst->ne[2] : 0;
- const int64_t ne3 = dst ? dst->ne[3] : 0;
-
- const uint64_t nb0 = dst ? dst->nb[0] : 0;
- const uint64_t nb1 = dst ? dst->nb[1] : 0;
- const uint64_t nb2 = dst ? dst->nb[2] : 0;
- const uint64_t nb3 = dst ? dst->nb[3] : 0;
-
- size_t offs_src[GGML_MAX_SRC];
-
- id<MTLBuffer> id_src[GGML_MAX_SRC];
-
- enum ggml_type srct[GGML_MAX_SRC];
-
- for (int i = 0; i < GGML_MAX_SRC; i++) {
- offs_src[i] = 0;
- id_src[i] = node->src[i] ? ggml_metal_get_buffer(node->src[i], &offs_src[i]) : nil;
- srct[i] = node->src[i] ? node->src[i]->type : GGML_TYPE_COUNT;
- }
-
- // TODO: tmp shorthands - remove
- size_t offs_src0 = offs_src[0];
- size_t offs_src1 = offs_src[1];
- size_t offs_src2 = offs_src[2];
-
- id<MTLBuffer> id_src0 = id_src[0];
- id<MTLBuffer> id_src1 = id_src[1];
- id<MTLBuffer> id_src2 = id_src[2];
-
- const enum ggml_type src0t = src0 ? src0->type : GGML_TYPE_COUNT;
- const enum ggml_type src1t = src1 ? src1->type : GGML_TYPE_COUNT;
- const enum ggml_type src2t = src2 ? src2->type : GGML_TYPE_COUNT;
- const enum ggml_type dstt = dst ? dst->type : GGML_TYPE_COUNT;
-
- size_t offs_dst = 0;
-
- id<MTLBuffer> id_dst = dst ? ggml_metal_get_buffer(dst, &offs_dst) : nil;
-
- int n_fuse = 1;
-
- // check if the current node can run concurrently with other nodes before it
- // the condition is that:
- // - the current node cannot write to any previous src or dst ranges
- // - the current node cannot read from any previous dst ranges
- //
- // if the condition is not satisfied, we put a memory barrier and clear all ranges
- // otherwise, we add the new ranges to the encoding context and process the node concurrently
- //
- {
- const bool is_concurrent = ggml_metal_encode_concurrency_check(ctx_enc, node);
-
- if (!is_concurrent) {
- ggml_metal_encode_concurrency_reset(ctx_enc);
- }
-
- if (ctx_dev->debug_graph > 0) {
- GGML_LOG_DEBUG("%s: node[%5d] - %-12s %s\n", __func__, idx, ggml_op_name(dst->op), is_concurrent ? "(concurrent)" : "");
- }
- if (ctx_dev->debug_graph > 1) {
- if (src0) {
- GGML_LOG_DEBUG("%s: src0 - %4s [%5lld, %5lld, %5lld, %5lld] [%5lld, %5lld, %5lld, %5lld], %d, %s\n", __func__, ggml_type_name(src0t), ne00, ne01, ne02, ne03, nb00, nb01, nb02, nb03,
- ggml_is_contiguous(src0), src0->name);
- }
- if (src1) {
- GGML_LOG_DEBUG("%s: src1 - %4s [%5lld, %5lld, %5lld, %5lld] [%5lld, %5lld, %5lld, %5lld], %d, %s\n", __func__, ggml_type_name(src1t), ne10, ne11, ne12, ne13, nb10, nb11, nb12, nb13,
- ggml_is_contiguous(src1), src1->name);
- }
- if (dst) {
- GGML_LOG_DEBUG("%s: dst - %4s [%5lld, %5lld, %5lld, %5lld] [%5lld, %5lld, %5lld, %5lld], 1, %s\n", __func__, ggml_type_name(dstt), ne0, ne1, ne2, ne3, nb0, nb1, nb2, nb3,
- dst->name);
- }
- }
- }
-
- id<MTLDevice> device = ctx_dev->mtl_device;
-
- switch (dst->op) {
- case GGML_OP_CONCAT:
- {
- id<MTLComputePipelineState> pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_CONCAT].pipeline;
-
- const int32_t dim = ((const int32_t *) dst->op_params)[0];
-
- ggml_metal_kargs_concat args = {
- /*.ne00 =*/ ne00,
- /*.ne01 =*/ ne01,
- /*.ne02 =*/ ne02,
- /*.ne03 =*/ ne03,
- /*.nb00 =*/ nb00,
- /*.nb01 =*/ nb01,
- /*.nb02 =*/ nb02,
- /*.nb03 =*/ nb03,
- /*.ne10 =*/ ne10,
- /*.ne11 =*/ ne11,
- /*.ne12 =*/ ne12,
- /*.ne13 =*/ ne13,
- /*.nb10 =*/ nb10,
- /*.nb11 =*/ nb11,
- /*.nb12 =*/ nb12,
- /*.nb13 =*/ nb13,
- /*.ne0 =*/ ne0,
- /*.ne1 =*/ ne1,
- /*.ne2 =*/ ne2,
- /*.ne3 =*/ ne3,
- /*.nb0 =*/ nb0,
- /*.nb1 =*/ nb1,
- /*.nb2 =*/ nb2,
- /*.nb3 =*/ nb3,
- /*.dim =*/ dim,
- };
-
- [encoder setComputePipelineState:pipeline];
- [encoder setBytes:&args length:sizeof(args) atIndex:0];
- [encoder setBuffer:id_src0 offset:offs_src0 atIndex:1];
- [encoder setBuffer:id_src1 offset:offs_src1 atIndex:2];
- [encoder setBuffer:id_dst offset:offs_dst atIndex:3];
-
- const int nth = MIN(1024, ne0);
-
- [encoder dispatchThreadgroups:MTLSizeMake(ne1, ne2, ne3) threadsPerThreadgroup:MTLSizeMake(nth, 1, 1)];
- } break;
- case GGML_OP_ADD:
- case GGML_OP_SUB:
- case GGML_OP_MUL:
- case GGML_OP_DIV:
- {
- GGML_ASSERT(src0t == GGML_TYPE_F32);
- GGML_ASSERT(src1t == GGML_TYPE_F32);
-
- GGML_ASSERT(ggml_is_contiguous_rows(src0));
- GGML_ASSERT(ggml_is_contiguous_rows(src1));
-
- const size_t offs = 0;
-
- bool bcast_row = false;
-
- ggml_metal_kargs_bin args = {
- /*.ne00 =*/ ne00,
- /*.ne01 =*/ ne01,
- /*.ne02 =*/ ne02,
- /*.ne03 =*/ ne03,
- /*.nb00 =*/ nb00,
- /*.nb01 =*/ nb01,
- /*.nb02 =*/ nb02,
- /*.nb03 =*/ nb03,
- /*.ne10 =*/ ne10,
- /*.ne11 =*/ ne11,
- /*.ne12 =*/ ne12,
- /*.ne13 =*/ ne13,
- /*.nb10 =*/ nb10,
- /*.nb11 =*/ nb11,
- /*.nb12 =*/ nb12,
- /*.nb13 =*/ nb13,
- /*.ne0 =*/ ne0,
- /*.ne1 =*/ ne1,
- /*.ne2 =*/ ne2,
- /*.ne3 =*/ ne3,
- /*.nb0 =*/ nb0,
- /*.nb1 =*/ nb1,
- /*.nb2 =*/ nb2,
- /*.nb3 =*/ nb3,
- /*.offs =*/ offs,
- /*.o1 =*/ { offs_src1 },
- };
-
- // c[0] = add(a, b[0])
- // c[1] = add(c[0], b[1])
- // c[2] = add(c[1], b[2])
- // ...
- if (ctx_dev->use_fusion) {
- ops[0] = GGML_OP_ADD;
- ops[1] = GGML_OP_ADD;
- ops[2] = GGML_OP_ADD;
- ops[3] = GGML_OP_ADD;
- ops[4] = GGML_OP_ADD;
- ops[5] = GGML_OP_ADD;
- ops[6] = GGML_OP_ADD;
- ops[7] = GGML_OP_ADD;
-
- size_t offs_fuse;
- id<MTLBuffer> id_fuse;
-
- // note: in metal, we sometimes encode the graph in parallel so we have to avoid fusing nodes
- // across splits. idx_end indicates the last node in the current split
- for (n_fuse = 0; n_fuse <= 6 && idx + n_fuse + 1 < idx_end; ++n_fuse) {
- if (!ggml_can_fuse(gf, idx + n_fuse, ops + n_fuse, 2)) {
- break;
- }
-
- if (nodes[n_fuse] != nodes[n_fuse + 1]->src[0]) {
- break;
- }
-
- // b[0] === b[1] === ...
- if (!ggml_are_same_layout(nodes[n_fuse]->src[1], nodes[n_fuse + 1]->src[1])) {
- break;
- }
-
- // only fuse nodes if src1 is in the same Metal buffer
- id_fuse = ggml_metal_get_buffer(nodes[n_fuse + 1]->src[1], &offs_fuse);
- if (id_fuse != id_src1) {
- break;
- }
-
- ctx_dev->fuse_cnt[nodes[n_fuse + 1]->op]++;
-
- args.o1[n_fuse + 1] = offs_fuse;
- }
-
- ++n_fuse;
-
- if (ctx_dev->debug_fusion > 1 && n_fuse > 1) {
- GGML_LOG_DEBUG("%s: fuse: ADD x %d\n", __func__, n_fuse);
- }
- }
-
- id<MTLComputePipelineState> pipeline = nil;
-
- if (ggml_nelements(src1) == ne10 && ggml_is_contiguous(src1) && ne00 % 4 == 0 && ne10 % 4 == 0) {
- GGML_ASSERT(ggml_is_contiguous(src0));
-
- // src1 is a row
- GGML_ASSERT(ne11 == 1);
-
- pipeline = ggml_metal_get_pipeline_bin(backend, dst->op, n_fuse, true);
-
- bcast_row = true;
- } else {
- pipeline = ggml_metal_get_pipeline_bin(backend, dst->op, n_fuse, false);
- }
-
- if (n_fuse > 1) {
- id_dst = ggml_metal_get_buffer(nodes[n_fuse - 1], &offs_dst);
-
- for (int i = 1; i < n_fuse; ++i) {
- if (!ggml_metal_encode_concurrency_check(ctx_enc, nodes[i])) {
- ggml_metal_encode_concurrency_reset(ctx_enc);
-
- break;
- }
- }
- }
-
- [encoder setComputePipelineState:pipeline];
- [encoder setBytes:&args length:sizeof(args) atIndex:0];
- [encoder setBuffer:id_src0 offset:offs_src0 atIndex:1];
- [encoder setBuffer:id_src1 offset:0 atIndex:2];
- [encoder setBuffer:id_dst offset:offs_dst atIndex:3];
-
- if (bcast_row) {
- const int64_t n = ggml_nelements(dst)/4;
-
- [encoder dispatchThreadgroups:MTLSizeMake(n, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)];
- } else {
- int nth = 32;
-
- while (16*nth < ne0 && nth < (int) pipeline.maxTotalThreadsPerThreadgroup) {
- nth *= 2;
- }
-
- [encoder dispatchThreadgroups:MTLSizeMake(ne01, ne02, ne03) threadsPerThreadgroup:MTLSizeMake(nth, 1, 1)];
- }
- } break;
- case GGML_OP_ADD_ID:
- {
- GGML_ASSERT(src0t == GGML_TYPE_F32);
- GGML_ASSERT(src1t == GGML_TYPE_F32);
- GGML_ASSERT(src2t == GGML_TYPE_I32);
- GGML_ASSERT(dstt == GGML_TYPE_F32);
-
- GGML_ASSERT(ggml_is_contiguous_rows(src0));
-
- id<MTLComputePipelineState> pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_ADD_ID].pipeline;
-
- ggml_metal_kargs_add_id args = {
- /*.ne0 =*/ ne0,
- /*.ne1 =*/ ne1,
- /*.nb01 =*/ nb01,
- /*.nb02 =*/ nb02,
- /*.nb11 =*/ nb11,
- /*.nb21 =*/ nb21,
- };
-
- [encoder setComputePipelineState:pipeline];
- [encoder setBytes:&args length:sizeof(args) atIndex:0];
- [encoder setBuffer:id_src0 offset:offs_src0 atIndex:1];
- [encoder setBuffer:id_src1 offset:offs_src1 atIndex:2];
- [encoder setBuffer:id_src2 offset:offs_src2 atIndex:3];
- [encoder setBuffer:id_dst offset:offs_dst atIndex:4];
-
- const int nth = MIN((int) pipeline.maxTotalThreadsPerThreadgroup, ne00);
-
- [encoder dispatchThreadgroups:MTLSizeMake(ne01, ne02, 1) threadsPerThreadgroup:MTLSizeMake(nth, 1, 1)];
- } break;
- case GGML_OP_REPEAT:
- {
- id<MTLComputePipelineState> pipeline;
-
- switch (src0t) {
- case GGML_TYPE_F32: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_REPEAT_F32].pipeline; break;
- case GGML_TYPE_F16: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_REPEAT_F16].pipeline; break;
- case GGML_TYPE_I32: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_REPEAT_I32].pipeline; break;
- case GGML_TYPE_I16: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_REPEAT_I16].pipeline; break;
- default: GGML_ABORT("fatal error");
- }
-
- ggml_metal_kargs_repeat args = {
- /*.ne00 =*/ ne00,
- /*.ne01 =*/ ne01,
- /*.ne02 =*/ ne02,
- /*.ne03 =*/ ne03,
- /*.nb00 =*/ nb00,
- /*.nb01 =*/ nb01,
- /*.nb02 =*/ nb02,
- /*.nb03 =*/ nb03,
- /*.ne0 =*/ ne0,
- /*.ne1 =*/ ne1,
- /*.ne2 =*/ ne2,
- /*.ne3 =*/ ne3,
- /*.nb0 =*/ nb0,
- /*.nb1 =*/ nb1,
- /*.nb2 =*/ nb2,
- /*.nb3 =*/ nb3,
- };
-
- [encoder setComputePipelineState:pipeline];
- [encoder setBytes:&args length:sizeof(args) atIndex:0];
- [encoder setBuffer:id_src0 offset:offs_src0 atIndex:1];
- [encoder setBuffer:id_dst offset:offs_dst atIndex:2];
-
- const int nth = MIN((int) pipeline.maxTotalThreadsPerThreadgroup, ne0);
-
- [encoder dispatchThreadgroups:MTLSizeMake(ne1, ne2, ne3) threadsPerThreadgroup:MTLSizeMake(nth, 1, 1)];
- } break;
- case GGML_OP_ACC:
- {
- GGML_ASSERT(src0t == GGML_TYPE_F32);
- GGML_ASSERT(src1t == GGML_TYPE_F32);
- GGML_ASSERT(dstt == GGML_TYPE_F32);
-
- GGML_ASSERT(ggml_is_contiguous(src0));
- GGML_ASSERT(ggml_is_contiguous(src1));
-
- const size_t pnb1 = ((const int32_t *) dst->op_params)[0];
- const size_t pnb2 = ((const int32_t *) dst->op_params)[1];
- const size_t pnb3 = ((const int32_t *) dst->op_params)[2];
- const size_t offs = ((const int32_t *) dst->op_params)[3];
-
- const bool inplace = (bool) ((const int32_t *) dst->op_params)[4];
-
- if (!inplace) {
- // run a separete kernel to cpy src->dst
- // not sure how to avoid this
- // TODO: make a simpler cpy_bytes kernel
-
- const id<MTLComputePipelineState> pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_CPY_F32_F32].pipeline;
-
- ggml_metal_kargs_cpy args = {
- /*.ne00 =*/ ne00,
- /*.ne01 =*/ ne01,
- /*.ne02 =*/ ne02,
- /*.ne03 =*/ ne03,
- /*.nb00 =*/ nb00,
- /*.nb01 =*/ nb01,
- /*.nb02 =*/ nb02,
- /*.nb03 =*/ nb03,
- /*.ne0 =*/ ne0,
- /*.ne1 =*/ ne1,
- /*.ne2 =*/ ne2,
- /*.ne3 =*/ ne3,
- /*.nb0 =*/ nb0,
- /*.nb1 =*/ nb1,
- /*.nb2 =*/ nb2,
- /*.nb3 =*/ nb3,
- };
-
- [encoder setComputePipelineState:pipeline];
- [encoder setBytes:&args length:sizeof(args) atIndex:0];
- [encoder setBuffer:id_src0 offset:offs_src0 atIndex:1];
- [encoder setBuffer:id_dst offset:offs_dst atIndex:2];
-
- const int nth = MIN((int) pipeline.maxTotalThreadsPerThreadgroup, ne00);
-
- [encoder dispatchThreadgroups:MTLSizeMake(ne01, ne02, ne03) threadsPerThreadgroup:MTLSizeMake(nth, 1, 1)];
-
- ggml_metal_encode_concurrency_reset(ctx_enc);
- }
-
- ggml_metal_kargs_bin args = {
- /*.ne00 =*/ ne00,
- /*.ne01 =*/ ne01,
- /*.ne02 =*/ ne02,
- /*.ne03 =*/ ne03,
- /*.nb00 =*/ nb00,
- /*.nb01 =*/ pnb1,
- /*.nb02 =*/ pnb2,
- /*.nb03 =*/ pnb3,
- /*.ne10 =*/ ne10,
- /*.ne11 =*/ ne11,
- /*.ne12 =*/ ne12,
- /*.ne13 =*/ ne13,
- /*.nb10 =*/ nb10,
- /*.nb11 =*/ nb11,
- /*.nb12 =*/ nb12,
- /*.nb13 =*/ nb13,
- /*.ne0 =*/ ne0,
- /*.ne1 =*/ ne1,
- /*.ne2 =*/ ne2,
- /*.ne3 =*/ ne3,
- /*.nb0 =*/ nb0,
- /*.nb1 =*/ pnb1,
- /*.nb2 =*/ pnb2,
- /*.nb3 =*/ pnb3,
- /*.offs =*/ offs,
- /*.o1 =*/ { offs_src1},
- };
-
- //const id<MTLComputePipelineState> pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_ADD].pipeline;
- const id<MTLComputePipelineState> pipeline = ggml_metal_get_pipeline_bin(backend, GGML_OP_ADD, 1, false);
-
- [encoder setComputePipelineState:pipeline];
- [encoder setBytes:&args length:sizeof(args) atIndex:0];
- [encoder setBuffer:id_src0 offset:offs_src0 atIndex:1];
- [encoder setBuffer:id_src1 offset:0 atIndex:2];
- [encoder setBuffer:id_dst offset:offs_dst atIndex:3];
-
- const int nth = MIN((int) pipeline.maxTotalThreadsPerThreadgroup, ne00);
-
- [encoder dispatchThreadgroups:MTLSizeMake(ne11, ne12, ne13) threadsPerThreadgroup:MTLSizeMake(nth, 1, 1)];
- } break;
- case GGML_OP_SCALE:
- {
- GGML_ASSERT(ggml_is_contiguous(src0));
-
- float scale;
- float bias;
- memcpy(&scale, ((const int32_t *) dst->op_params) + 0, sizeof(float));
- memcpy(&bias, ((const int32_t *) dst->op_params) + 1, sizeof(float));
-
- int64_t n = ggml_nelements(dst);
-
- id<MTLComputePipelineState> pipeline = nil;
-
- if (n % 4 == 0) {
- n /= 4;
- pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_SCALE_4].pipeline;
- } else {
- pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_SCALE].pipeline;
- }
-
- [encoder setComputePipelineState:pipeline];
- [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
- [encoder setBuffer:id_dst offset:offs_dst atIndex:1];
- [encoder setBytes:&scale length:sizeof(scale) atIndex:2];
- [encoder setBytes:&bias length:sizeof(bias) atIndex:3];
-
- [encoder dispatchThreadgroups:MTLSizeMake(n, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)];
- } break;
- case GGML_OP_CLAMP:
- {
- id<MTLComputePipelineState> pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_CLAMP].pipeline;
-
- float min;
- float max;
- memcpy(&min, ((const int32_t *) dst->op_params) + 0, sizeof(float));
- memcpy(&max, ((const int32_t *) dst->op_params) + 1, sizeof(float));
-
- [encoder setComputePipelineState:pipeline];
- [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
- [encoder setBuffer:id_dst offset:offs_dst atIndex:1];
- [encoder setBytes:&min length:sizeof(min) atIndex:2];
- [encoder setBytes:&max length:sizeof(max) atIndex:3];
-
- const int64_t n = ggml_nelements(dst);
-
- [encoder dispatchThreadgroups:MTLSizeMake(n, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)];
- } break;
- case GGML_OP_UNARY:
- switch (ggml_get_unary_op(node)) {
- // we are not taking into account the strides, so for now require contiguous tensors
- GGML_ASSERT(ggml_is_contiguous(src0));
-
- case GGML_UNARY_OP_TANH:
- {
- id<MTLComputePipelineState> pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_TANH].pipeline;
-
- [encoder setComputePipelineState:pipeline];
- [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
- [encoder setBuffer:id_dst offset:offs_dst atIndex:1];
-
- const int64_t n = ggml_nelements(dst);
-
- [encoder dispatchThreadgroups:MTLSizeMake(n, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)];
- } break;
- case GGML_UNARY_OP_RELU:
- {
- id<MTLComputePipelineState> pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_RELU].pipeline;
-
- [encoder setComputePipelineState:pipeline];
- [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
- [encoder setBuffer:id_dst offset:offs_dst atIndex:1];
-
- const int64_t n = ggml_nelements(dst);
-
- [encoder dispatchThreadgroups:MTLSizeMake(n, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)];
- } break;
- case GGML_UNARY_OP_SIGMOID:
- {
- id<MTLComputePipelineState> pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_SIGMOID].pipeline;
-
- [encoder setComputePipelineState:pipeline];
- [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
- [encoder setBuffer:id_dst offset:offs_dst atIndex:1];
-
- const int64_t n = ggml_nelements(dst);
-
- [encoder dispatchThreadgroups:MTLSizeMake(n, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)];
- } break;
- case GGML_UNARY_OP_GELU:
- {
- int64_t n = ggml_nelements(dst);
-
- id<MTLComputePipelineState> pipeline = nil;
-
- if (n % 4 == 0) {
- pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_GELU_4].pipeline;
- n /= 4;
- } else {
- pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_GELU].pipeline;
- }
-
- [encoder setComputePipelineState:pipeline];
- [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
- [encoder setBuffer:id_dst offset:offs_dst atIndex:1];
-
- [encoder dispatchThreadgroups:MTLSizeMake(n, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)];
- } break;
- case GGML_UNARY_OP_GELU_ERF:
- {
- int64_t n = ggml_nelements(dst);
-
- id<MTLComputePipelineState> pipeline = nil;
-
- if (n % 4 == 0) {
- pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_GELU_ERF_4].pipeline;
- n /= 4;
- } else {
- pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_GELU_ERF].pipeline;
- }
-
- [encoder setComputePipelineState:pipeline];
- [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
- [encoder setBuffer:id_dst offset:offs_dst atIndex:1];
-
- [encoder dispatchThreadgroups:MTLSizeMake(n, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)];
- } break;
- case GGML_UNARY_OP_GELU_QUICK:
- {
- int64_t n = ggml_nelements(dst);
-
- id<MTLComputePipelineState> pipeline = nil;
-
- if (n % 4 == 0) {
- pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_GELU_QUICK_4].pipeline;
- n /= 4;
- } else {
- pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_GELU_QUICK].pipeline;
- }
-
- [encoder setComputePipelineState:pipeline];
- [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
- [encoder setBuffer:id_dst offset:offs_dst atIndex:1];
-
- [encoder dispatchThreadgroups:MTLSizeMake(n, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)];
- } break;
- case GGML_UNARY_OP_SILU:
- {
- int64_t n = ggml_nelements(dst);
-
- id<MTLComputePipelineState> pipeline = nil;
-
- if (n % 4 == 0) {
- pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_SILU_4].pipeline;
- n /= 4;
- } else {
- pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_SILU].pipeline;
- }
-
- [encoder setComputePipelineState:pipeline];
- [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
- [encoder setBuffer:id_dst offset:offs_dst atIndex:1];
-
- [encoder dispatchThreadgroups:MTLSizeMake(n, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)];
- } break;
- case GGML_UNARY_OP_ELU:
- {
- id<MTLComputePipelineState> pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_ELU].pipeline;
-
- [encoder setComputePipelineState:pipeline];
- [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
- [encoder setBuffer:id_dst offset:offs_dst atIndex:1];
-
- const int64_t n = ggml_nelements(dst);
-
- [encoder dispatchThreadgroups:MTLSizeMake(n, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)];
- } break;
- case GGML_UNARY_OP_NEG:
- {
- id<MTLComputePipelineState> pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_NEG].pipeline;
-
- [encoder setComputePipelineState:pipeline];
- [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
- [encoder setBuffer:id_dst offset:offs_dst atIndex:1];
-
- const int64_t n = ggml_nelements(dst);
-
- [encoder dispatchThreadgroups:MTLSizeMake(n, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)];
- } break;
- case GGML_UNARY_OP_ABS:
- {
- id<MTLComputePipelineState> pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_ABS].pipeline;
-
- [encoder setComputePipelineState:pipeline];
- [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
- [encoder setBuffer:id_dst offset:offs_dst atIndex:1];
-
- const int64_t n = ggml_nelements(dst);
-
- [encoder dispatchThreadgroups:MTLSizeMake(n, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)];
- } break;
- case GGML_UNARY_OP_SGN:
- {
- id<MTLComputePipelineState> pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_SGN].pipeline;
-
- [encoder setComputePipelineState:pipeline];
- [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
- [encoder setBuffer:id_dst offset:offs_dst atIndex:1];
-
- const int64_t n = ggml_nelements(dst);
-
- [encoder dispatchThreadgroups:MTLSizeMake(n, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)];
- } break;
- case GGML_UNARY_OP_STEP:
- {
- id<MTLComputePipelineState> pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_STEP].pipeline;
-
- [encoder setComputePipelineState:pipeline];
- [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
- [encoder setBuffer:id_dst offset:offs_dst atIndex:1];
-
- const int64_t n = ggml_nelements(dst);
-
- [encoder dispatchThreadgroups:MTLSizeMake(n, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)];
- } break;
- case GGML_UNARY_OP_HARDSWISH:
- {
- id<MTLComputePipelineState> pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_HARDSWISH].pipeline;
-
- [encoder setComputePipelineState:pipeline];
- [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
- [encoder setBuffer:id_dst offset:offs_dst atIndex:1];
-
- const int64_t n = ggml_nelements(dst);
-
- [encoder dispatchThreadgroups:MTLSizeMake(n, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)];
- } break;
- case GGML_UNARY_OP_HARDSIGMOID:
- {
- id<MTLComputePipelineState> pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_HARDSIGMOID].pipeline;
-
- [encoder setComputePipelineState:pipeline];
- [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
- [encoder setBuffer:id_dst offset:offs_dst atIndex:1];
-
- const int64_t n = ggml_nelements(dst);
-
- [encoder dispatchThreadgroups:MTLSizeMake(n, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)];
- } break;
- case GGML_UNARY_OP_EXP:
- {
- id<MTLComputePipelineState> pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_EXP].pipeline;
-
- [encoder setComputePipelineState:pipeline];
- [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
- [encoder setBuffer:id_dst offset:offs_dst atIndex:1];
-
- const int64_t n = ggml_nelements(dst);
-
- [encoder dispatchThreadgroups:MTLSizeMake(n, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)];
- } break;
- default:
- {
- GGML_LOG_WARN("%s: node %3d, op = %8s not implemented\n", __func__, idx, ggml_op_name(dst->op));
- GGML_ABORT("fatal error");
- }
- } break;
- case GGML_OP_GLU:
- {
- GGML_ASSERT(ggml_is_contiguous_1(src0));
-
- if (src1) {
- GGML_ASSERT(ggml_are_same_shape(src0, src1));
- }
-
- id<MTLComputePipelineState> pipeline = nil;
-
- switch (ggml_get_glu_op(node)) {
- case GGML_GLU_OP_REGLU:
- pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_REGLU].pipeline;
- break;
- case GGML_GLU_OP_GEGLU:
- pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_GEGLU].pipeline;
- break;
- case GGML_GLU_OP_SWIGLU:
- pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_SWIGLU].pipeline;
- break;
- case GGML_GLU_OP_SWIGLU_OAI:
- pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_SWIGLU_OAI].pipeline;
- break;
- case GGML_GLU_OP_GEGLU_ERF:
- pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_GEGLU_ERF].pipeline;
- break;
- case GGML_GLU_OP_GEGLU_QUICK:
- pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_GEGLU_QUICK].pipeline;
- break;
- default:
- GGML_ABORT("fatal error");
- }
-
- const int32_t swp = ggml_get_op_params_i32(dst, 1);
- const float alpha = ggml_get_op_params_f32(dst, 2);
- const float limit = ggml_get_op_params_f32(dst, 3);
-
- const int32_t i00 = swp ? ne0 : 0;
- const int32_t i10 = swp ? 0 : ne0;
-
- ggml_metal_kargs_glu args = {
- /*.ne00 =*/ ne00,
- /*.nb01 =*/ nb01,
- /*.ne10 =*/ src1 ? ne10 : ne00,
- /*.nb11 =*/ src1 ? nb11 : nb01,
- /*.ne0 =*/ ne0,
- /*.nb1 =*/ nb1,
- /*.i00 =*/ src1 ? 0 : i00,
- /*.i10 =*/ src1 ? 0 : i10,
- /*.alpha=*/ alpha,
- /*.limit=*/ limit
- };
-
- [encoder setComputePipelineState:pipeline];
- [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
- if (src1) {
- [encoder setBuffer:id_src1 offset:offs_src1 atIndex:1];
- } else {
- [encoder setBuffer:id_src0 offset:offs_src0 atIndex:1];
- }
- [encoder setBuffer:id_dst offset:offs_dst atIndex:2];
- [encoder setBytes:&args length:sizeof(args) atIndex:3];
-
- const int64_t nrows = ggml_nrows(src0);
-
- const int32_t nth = MIN((int) pipeline.maxTotalThreadsPerThreadgroup, ne00/2);
-
- [encoder dispatchThreadgroups:MTLSizeMake(nrows, 1, 1) threadsPerThreadgroup:MTLSizeMake(nth, 1, 1)];
- } break;
- case GGML_OP_SQR:
- {
- GGML_ASSERT(ggml_is_contiguous(src0));
-
- id<MTLComputePipelineState> pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_SQR].pipeline;
-
- [encoder setComputePipelineState:pipeline];
- [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
- [encoder setBuffer:id_dst offset:offs_dst atIndex:1];
-
- const int64_t n = ggml_nelements(dst);
-
- [encoder dispatchThreadgroups:MTLSizeMake(n, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)];
- } break;
- case GGML_OP_SQRT:
- {
- GGML_ASSERT(ggml_is_contiguous(src0));
-
- id<MTLComputePipelineState> pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_SQRT].pipeline;
-
- [encoder setComputePipelineState:pipeline];
- [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
- [encoder setBuffer:id_dst offset:offs_dst atIndex:1];
-
- const int64_t n = ggml_nelements(dst);
-
- [encoder dispatchThreadgroups:MTLSizeMake(n, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)];
- } break;
- case GGML_OP_SIN:
- {
- GGML_ASSERT(ggml_is_contiguous(src0));
-
- id<MTLComputePipelineState> pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_SIN].pipeline;
-
- [encoder setComputePipelineState:pipeline];
- [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
- [encoder setBuffer:id_dst offset:offs_dst atIndex:1];
-
- const int64_t n = ggml_nelements(dst);
-
- [encoder dispatchThreadgroups:MTLSizeMake(n, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)];
- } break;
- case GGML_OP_COS:
- {
- GGML_ASSERT(ggml_is_contiguous(src0));
-
- id<MTLComputePipelineState> pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_COS].pipeline;
-
- [encoder setComputePipelineState:pipeline];
- [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
- [encoder setBuffer:id_dst offset:offs_dst atIndex:1];
-
- const int64_t n = ggml_nelements(dst);
-
- [encoder dispatchThreadgroups:MTLSizeMake(n, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)];
- } break;
- case GGML_OP_SUM_ROWS:
- case GGML_OP_MEAN:
- {
- GGML_ASSERT(src0->nb[0] == ggml_type_size(src0->type));
-
- id<MTLComputePipelineState> pipeline = nil;
-
- switch (dst->op) {
- case GGML_OP_SUM_ROWS:
- pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_SUM_ROWS].pipeline;
- break;
- case GGML_OP_MEAN:
- pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MEAN].pipeline;
- break;
- default:
- GGML_ABORT("fatal error");
- }
-
- int nth = 32; // SIMD width
-
- while (nth < ne00 && nth < (int) pipeline.maxTotalThreadsPerThreadgroup) {
- nth *= 2;
- }
-
- nth = MIN(nth, (int) pipeline.maxTotalThreadsPerThreadgroup);
- nth = MIN(nth, ne00);
-
- ggml_metal_kargs_sum_rows args = {
- /*.ne00 =*/ ne00,
- /*.ne01 =*/ ne01,
- /*.ne02 =*/ ne02,
- /*.ne03 =*/ ne03,
- /*.nb00 =*/ nb00,
- /*.nb01 =*/ nb01,
- /*.nb02 =*/ nb02,
- /*.nb03 =*/ nb03,
- /*.ne10 =*/ ne10,
- /*.ne11 =*/ ne11,
- /*.ne12 =*/ ne12,
- /*.ne13 =*/ ne13,
- /*.nb10 =*/ nb10,
- /*.nb11 =*/ nb11,
- /*.nb12 =*/ nb12,
- /*.nb13 =*/ nb13,
- /*.ne0 =*/ ne0,
- /*.ne1 =*/ ne1,
- /*.ne2 =*/ ne2,
- /*.ne3 =*/ ne3,
- /*.nb0 =*/ nb0,
- /*.nb1 =*/ nb1,
- /*.nb2 =*/ nb2,
- /*.nb3 =*/ nb3,
- };
-
- [encoder setComputePipelineState:pipeline];
- [encoder setBytes:&args length:sizeof(args) atIndex:0];
- [encoder setBuffer:id_src0 offset:offs_src0 atIndex:1];
- [encoder setBuffer:id_dst offset:offs_dst atIndex:2];
- [encoder setThreadgroupMemoryLength:32*sizeof(float) atIndex:0];
-
- [encoder dispatchThreadgroups:MTLSizeMake(ne01, ne02, ne03) threadsPerThreadgroup:MTLSizeMake(nth, 1, 1)];
- } break;
- case GGML_OP_SOFT_MAX:
- {
- GGML_ASSERT(!src1 || src1->type == GGML_TYPE_F16 || src1->type == GGML_TYPE_F32);
-
- int nth = 32; // SIMD width
-
- id<MTLComputePipelineState> pipeline = nil;
-
- const bool use_f16 = (src1 && src1->type == GGML_TYPE_F16);
-
- if (ne00%4 == 0) {
- while (nth < ne00/4 && nth*ne01*ne02*ne03 < 256) {
- nth *= 2;
- }
- if (use_f16) {
- pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_SOFT_MAX_F16_4].pipeline;
- } else {
- pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_SOFT_MAX_F32_4].pipeline;
- }
- } else {
- while (nth < ne00 && nth*ne01*ne02*ne03 < 256) {
- nth *= 2;
- }
- if (use_f16) {
- pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_SOFT_MAX_F16].pipeline;
- } else {
- pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_SOFT_MAX_F32].pipeline;
- }
- }
-
- float scale;
- float max_bias;
-
- memcpy(&scale, ((const int32_t *) dst->op_params) + 0, sizeof(scale));
- memcpy(&max_bias, ((const int32_t *) dst->op_params) + 1, sizeof(max_bias));
-
- const uint32_t n_head = src0->ne[2];
- const uint32_t n_head_log2 = 1u << (uint32_t) floorf(log2f((float) n_head));
-
- const float m0 = powf(2.0f, -(max_bias ) / n_head_log2);
- const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_head_log2);
-
- id<MTLBuffer> h_src0 = id_src0;
-
- // softmax
-
- ggml_metal_kargs_soft_max args = {
- /*.ne00 =*/ ne00,
- /*.ne01 =*/ ne01,
- /*.ne02 =*/ ne02,
- /*.nb01 =*/ nb01,
- /*.nb02 =*/ nb02,
- /*.nb03 =*/ nb03,
- /*.ne11 =*/ ne11,
- /*.ne12 =*/ ne12,
- /*.ne13 =*/ ne13,
- /*.nb11 =*/ nb11,
- /*.nb12 =*/ nb12,
- /*.nb13 =*/ nb13,
- /*.nb1 =*/ nb1,
- /*.nb2 =*/ nb2,
- /*.nb3 =*/ nb3,
- /*.scale =*/ scale,
- /*.max_bias =*/ max_bias,
- /*.m0 =*/ m0,
- /*.m1 =*/ m1,
- /*.n_head_log2 =*/ n_head_log2,
- };
-
- [encoder setComputePipelineState:pipeline];
- [encoder setBuffer:h_src0 offset:offs_src0 atIndex:0];
- if (id_src1) {
- [encoder setBuffer:id_src1 offset:offs_src1 atIndex:1];
- } else {
- [encoder setBuffer:h_src0 offset:offs_src0 atIndex:1];
- }
- if (id_src2) {
- [encoder setBuffer:id_src2 offset:offs_src2 atIndex:2];
- } else {
- [encoder setBuffer:h_src0 offset:offs_src0 atIndex:2];
- }
- [encoder setBuffer:id_dst offset:offs_dst atIndex:3];
- [encoder setBytes:&args length:sizeof(args) atIndex:4];
-
- [encoder setThreadgroupMemoryLength:32*sizeof(float) atIndex:0];
-
- [encoder dispatchThreadgroups:MTLSizeMake(ne01, ne02, ne03) threadsPerThreadgroup:MTLSizeMake(nth, 1, 1)];
- } break;
- case GGML_OP_DIAG_MASK_INF:
- {
- const int n_past = ((const int32_t *)(dst->op_params))[0];
-
- id<MTLComputePipelineState> pipeline = nil;
-
- if (ne00%8 == 0) {
- pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_DIAG_MASK_INF_8].pipeline;
- } else {
- pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_DIAG_MASK_INF].pipeline;
- }
-
- ggml_metal_kargs_diag_mask_inf args = {
- /*.ne00 =*/ ne00,
- /*.ne01 =*/ ne01,
- /*.n_past =*/ n_past,
- };
-
- [encoder setComputePipelineState:pipeline];
- [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
- [encoder setBuffer:id_dst offset:offs_dst atIndex:1];
- [encoder setBytes:&args length:sizeof(args) atIndex:2];
-
- if (ne00%8 == 0) {
- [encoder dispatchThreadgroups:MTLSizeMake(ne00*ne01*ne02/8, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)];
- }
- else {
- [encoder dispatchThreadgroups:MTLSizeMake(ne00, ne01, ne02) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)];
- }
- } break;
- case GGML_OP_SSM_CONV:
- {
- GGML_ASSERT(src0t == GGML_TYPE_F32);
- GGML_ASSERT(src1t == GGML_TYPE_F32);
-
- GGML_ASSERT(ggml_is_contiguous(src0));
- GGML_ASSERT(ggml_is_contiguous(src1));
-
- id<MTLComputePipelineState> pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_SSM_CONV_F32].pipeline;
-
- ggml_metal_kargs_ssm_conv args = {
- /*.ne00 =*/ ne00,
- /*.ne01 =*/ ne01,
- /*.ne02 =*/ ne02,
- /*.nb00 =*/ nb00,
- /*.nb01 =*/ nb01,
- /*.nb02 =*/ nb02,
- /*.ne10 =*/ ne10,
- /*.ne11 =*/ ne11,
- /*.nb10 =*/ nb10,
- /*.nb11 =*/ nb11,
- /*.ne0 =*/ ne0,
- /*.ne1 =*/ ne1,
- /*.ne2 =*/ ne2,
- /*.nb0 =*/ nb0,
- /*.nb1 =*/ nb1,
- /*.nb2 =*/ nb2,
- };
-
- [encoder setComputePipelineState:pipeline];
- [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
- [encoder setBuffer:id_src1 offset:offs_src1 atIndex:1];
- [encoder setBuffer:id_dst offset:offs_dst atIndex:2];
- [encoder setBytes:&args length:sizeof(args) atIndex:3];
-
- [encoder dispatchThreadgroups:MTLSizeMake(ne01, ne1, ne02) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)];
- } break;
- case GGML_OP_SSM_SCAN:
- {
- struct ggml_tensor * src3 = node->src[3];
- struct ggml_tensor * src4 = node->src[4];
- struct ggml_tensor * src5 = node->src[5];
- struct ggml_tensor * src6 = node->src[6];
-
- GGML_ASSERT(src3);
- GGML_ASSERT(src4);
- GGML_ASSERT(src5);
- GGML_ASSERT(src6);
-
- size_t offs_src3 = 0;
- size_t offs_src4 = 0;
- size_t offs_src5 = 0;
- size_t offs_src6 = 0;
-
- id<MTLBuffer> id_src3 = src3 ? ggml_metal_get_buffer(src3, &offs_src3) : nil;
- id<MTLBuffer> id_src4 = src4 ? ggml_metal_get_buffer(src4, &offs_src4) : nil;
- id<MTLBuffer> id_src5 = src5 ? ggml_metal_get_buffer(src5, &offs_src5) : nil;
- id<MTLBuffer> id_src6 = src6 ? ggml_metal_get_buffer(src6, &offs_src6) : nil;
-
- const int64_t ne30 = src3->ne[0];
- const int64_t ne31 = src3->ne[1]; GGML_UNUSED(ne31);
-
- const uint64_t nb30 = src3->nb[0]; GGML_UNUSED(nb30);
- const uint64_t nb31 = src3->nb[1];
-
- const int64_t ne40 = src4->ne[0]; GGML_UNUSED(ne40);
- const int64_t ne41 = src4->ne[1];
- const int64_t ne42 = src4->ne[2]; GGML_UNUSED(ne42);
- const int64_t ne43 = src4->ne[3]; GGML_UNUSED(ne43);
-
- const uint64_t nb40 = src4->nb[0]; GGML_UNUSED(nb40);
- const uint64_t nb41 = src4->nb[1];
- const uint64_t nb42 = src4->nb[2];
- const uint64_t nb43 = src4->nb[3];
-
- const int64_t ne50 = src5->ne[0]; GGML_UNUSED(ne50);
- const int64_t ne51 = src5->ne[1]; GGML_UNUSED(ne51);
- const int64_t ne52 = src5->ne[2]; GGML_UNUSED(ne52);
- const int64_t ne53 = src5->ne[3]; GGML_UNUSED(ne53);
-
- const uint64_t nb50 = src5->nb[0]; GGML_UNUSED(nb50);
- const uint64_t nb51 = src5->nb[1];
- const uint64_t nb52 = src5->nb[2];
- const uint64_t nb53 = src5->nb[3];
-
- const int64_t ne60 = src6->ne[0]; GGML_UNUSED(ne60);
-
- const uint64_t nb60 = src6->nb[0]; GGML_UNUSED(nb60);
-
- const int64_t d_state = ne00;
- const int64_t d_inner = ne01;
- const int64_t n_head = ne02;
- const int64_t n_group = ne41;
- const int64_t n_seq_tokens = ne12;
- const int64_t n_seqs = ne13;
-
- id<MTLComputePipelineState> pipeline = nil;
-
- if (ne30 == 1) {
- // Mamba-2
- pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_SSM_SCAN_F32_GROUP].pipeline;
- } else {
- pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_SSM_SCAN_F32].pipeline;
- }
-
- ggml_metal_kargs_ssm_scan args = {
- /*.d_state =*/ d_state,
- /*.d_inner =*/ d_inner,
- /*.n_head =*/ n_head,
- /*.n_group =*/ n_group,
- /*.n_seq_tokens =*/ n_seq_tokens,
- /*.n_seqs =*/ n_seqs,
- /*.s_off =*/ ggml_nelements(src1) * sizeof(float),
- /*.nb01 =*/ nb01,
- /*.nb02 =*/ nb02,
- /*.nb03 =*/ nb03,
- /*.nb11 =*/ nb11,
- /*.nb12 =*/ nb12,
- /*.nb13 =*/ nb13,
- /*.nb21 =*/ nb21,
- /*.nb22 =*/ nb22,
- /*.nb31 =*/ nb31,
- /*.nb41 =*/ nb41,
- /*.nb42 =*/ nb42,
- /*.nb43 =*/ nb43,
- /*.nb51 =*/ nb51,
- /*.nb52 =*/ nb52,
- /*.nb53 =*/ nb53,
- };
-
- [encoder setComputePipelineState:pipeline];
- [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
- [encoder setBuffer:id_src1 offset:offs_src1 atIndex:1];
- [encoder setBuffer:id_src2 offset:offs_src2 atIndex:2];
- [encoder setBuffer:id_src3 offset:offs_src3 atIndex:3];
- [encoder setBuffer:id_src4 offset:offs_src4 atIndex:4];
- [encoder setBuffer:id_src5 offset:offs_src5 atIndex:5];
- [encoder setBuffer:id_src6 offset:offs_src6 atIndex:6];
- [encoder setBuffer:id_dst offset:offs_dst atIndex:7];
- [encoder setBytes:&args length:sizeof(args) atIndex:8];
-
- // One shared memory bucket for each simd group in the threadgroup
- // NOTE: Metal kernels require the buffer size to be multiple of 16 bytes
- // https://developer.apple.com/documentation/metal/mtlcomputecommandencoder/1443142-setthreadgroupmemorylength
- if (d_state >= 32) {
- GGML_ASSERT((int64_t)(d_state / 32) <= 32);
- const int64_t shmem_size = 32;
- GGML_ASSERT(d_state <= (int64_t)pipeline.maxTotalThreadsPerThreadgroup);
- [encoder setThreadgroupMemoryLength:(shmem_size)*sizeof(float) atIndex:0];
- }
-
- if (ne30 == 1) {
- // Mamba-2
- [encoder dispatchThreadgroups:MTLSizeMake(d_inner, n_head, n_seqs) threadsPerThreadgroup:MTLSizeMake(d_state, 1, 1)];
- } else {
- GGML_ASSERT(d_inner == 1);
- [encoder dispatchThreadgroups:MTLSizeMake(n_head, n_seqs, 1) threadsPerThreadgroup:MTLSizeMake(d_state, 1, 1)];
- }
- } break;
- case GGML_OP_RWKV_WKV6:
- {
- const int64_t B = dst->src[5]->ne[1];
- const int64_t T = dst->src[0]->ne[2];
- const int64_t C = dst->ne[0];
- const int64_t H = dst->src[0]->ne[1];
-
- GGML_ASSERT(dst->src[5]->type == GGML_TYPE_F32);
- GGML_ASSERT(C % H == 0);
- GGML_ASSERT(C / H == 64);
-
- size_t offs_src3 = 0;
- size_t offs_src4 = 0;
- size_t offs_src5 = 0;
-
- id<MTLBuffer> id_src3 = dst->src[3] ? ggml_metal_get_buffer(dst->src[3], &offs_src3) : nil;
- id<MTLBuffer> id_src4 = dst->src[4] ? ggml_metal_get_buffer(dst->src[4], &offs_src4) : nil;
- id<MTLBuffer> id_src5 = dst->src[5] ? ggml_metal_get_buffer(dst->src[5], &offs_src5) : nil;
-
- id<MTLComputePipelineState> pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_RWKV_WKV6_F32].pipeline;
-
- [encoder setComputePipelineState:pipeline];
- [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
- [encoder setBuffer:id_src1 offset:offs_src1 atIndex:1];
- [encoder setBuffer:id_src2 offset:offs_src2 atIndex:2];
- [encoder setBuffer:id_src3 offset:offs_src3 atIndex:3];
- [encoder setBuffer:id_src4 offset:offs_src4 atIndex:4];
- [encoder setBuffer:id_src5 offset:offs_src5 atIndex:5];
- [encoder setBuffer:id_dst offset:offs_dst atIndex:6];
-
- [encoder setBytes:&B length:sizeof(B) atIndex:7];
- [encoder setBytes:&T length:sizeof(T) atIndex:8];
- [encoder setBytes:&C length:sizeof(C) atIndex:9];
- [encoder setBytes:&H length:sizeof(H) atIndex:10];
-
- [encoder dispatchThreadgroups:MTLSizeMake(B * H, 1, 1) threadsPerThreadgroup:MTLSizeMake(C/ H, 1, 1)];
- } break;
- case GGML_OP_RWKV_WKV7:
- {
- const int64_t B = dst->src[6]->ne[1];
- const int64_t T = dst->src[0]->ne[2];
- const int64_t C = dst->ne[0];
- const int64_t H = dst->src[0]->ne[1];
-
- GGML_ASSERT(dst->src[6]->type == GGML_TYPE_F32);
- GGML_ASSERT(C % H == 0);
- GGML_ASSERT(C / H == 64);
-
- size_t offs_src3 = 0;
- size_t offs_src4 = 0;
- size_t offs_src5 = 0;
- size_t offs_src6 = 0;
-
- id<MTLBuffer> id_src3 = dst->src[3] ? ggml_metal_get_buffer(dst->src[3], &offs_src3) : nil;
- id<MTLBuffer> id_src4 = dst->src[4] ? ggml_metal_get_buffer(dst->src[4], &offs_src4) : nil;
- id<MTLBuffer> id_src5 = dst->src[5] ? ggml_metal_get_buffer(dst->src[5], &offs_src5) : nil;
- id<MTLBuffer> id_src6 = dst->src[6] ? ggml_metal_get_buffer(dst->src[6], &offs_src6) : nil;
-
- id<MTLComputePipelineState> pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_RWKV_WKV7_F32].pipeline;
-
- [encoder setComputePipelineState:pipeline];
- [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
- [encoder setBuffer:id_src1 offset:offs_src1 atIndex:1];
- [encoder setBuffer:id_src2 offset:offs_src2 atIndex:2];
- [encoder setBuffer:id_src3 offset:offs_src3 atIndex:3];
- [encoder setBuffer:id_src4 offset:offs_src4 atIndex:4];
- [encoder setBuffer:id_src5 offset:offs_src5 atIndex:5];
- [encoder setBuffer:id_src6 offset:offs_src6 atIndex:6];
- [encoder setBuffer:id_dst offset:offs_dst atIndex:7];
-
- [encoder setBytes:&B length:sizeof(B) atIndex:8];
- [encoder setBytes:&T length:sizeof(T) atIndex:9];
- [encoder setBytes:&C length:sizeof(C) atIndex:10];
- [encoder setBytes:&H length:sizeof(H) atIndex:11];
-
- [encoder dispatchThreadgroups:MTLSizeMake(B * H, 1, 1) threadsPerThreadgroup:MTLSizeMake(C/ H, 1, 1)];
- } break;
- case GGML_OP_MUL_MAT:
- {
- GGML_ASSERT(ne00 == ne10);
-
- GGML_ASSERT(ne12 % ne02 == 0);
- GGML_ASSERT(ne13 % ne03 == 0);
-
- const uint32_t r2 = ne12/ne02;
- const uint32_t r3 = ne13/ne03;
-
- // find the break-even point where the matrix-matrix kernel becomes more efficient compared
- // to the matrix-vector kernel
- const int ne11_mm_min = 8;
-
- // first try to use small-batch mat-mv kernels
- // these should be efficient for BS [2, ~8]
- if (src1t == GGML_TYPE_F32 && (ne00%128 == 0) &&
- (
- (
- (
- src0t == GGML_TYPE_F32 || // TODO: helper function
- src0t == GGML_TYPE_F16 ||
- src0t == GGML_TYPE_Q4_0 ||
- src0t == GGML_TYPE_Q4_1 ||
- src0t == GGML_TYPE_Q5_0 ||
- src0t == GGML_TYPE_Q5_1 ||
- src0t == GGML_TYPE_Q8_0 ||
- src0t == GGML_TYPE_MXFP4 ||
- src0t == GGML_TYPE_IQ4_NL ||
- false) && (ne11 >= 2 && ne11 <= 8)
- ) ||
- (
- (
- src0t == GGML_TYPE_Q4_K ||
- src0t == GGML_TYPE_Q5_K ||
- src0t == GGML_TYPE_Q6_K ||
- false) && (ne11 >= 4 && ne11 <= 8)
- )
- )
- ) {
- // TODO: determine the optimal parameters based on grid utilization
- // I still don't know why we should not always use the maximum available threads:
- //
- // nsg = pipeline.maxTotalThreadsPerThreadgroup / 32
- //
- // my current hypothesis is that the work grid is not evenly divisible for different nsg
- // values and there can be some tail effects when nsg is high. need to confirm this
- //
- const int nsg = 2; // num simdgroups per threadgroup
-
- // num threads along row per simdgroup
- int nxpsg = 0;
- if (ne00 % 256 == 0 && ne11 < 3) {
- nxpsg = 16;
- } else if (ne00 % 128 == 0) {
- nxpsg = 8;
- } else {
- nxpsg = 4;
- }
-
- const int nypsg = 32/nxpsg; // num threads along col per simdgroup (i.e. a simdgroup processes that many src0 rows at a time)
- const int r0ptg = nypsg*nsg; // num src0 rows per threadgroup
- int r1ptg = 4; // num src1 rows per threadgroup
-
- // note: not sure how optimal are those across all different hardware. there might be someting cleverer
- switch (ne11) {
- case 2:
- r1ptg = 2; break;
- case 3:
- case 6:
- r1ptg = 3; break;
- case 4:
- case 7:
- case 8:
- r1ptg = 4; break;
- case 5:
- r1ptg = 5; break;
- };
-
- id<MTLComputePipelineState> pipeline = nil;
-
- switch (src0->type) {
- case GGML_TYPE_F32:
- switch (r1ptg) {
- case 2: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_EXT_F32_F32_R1_2].pipeline; break;
- case 3: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_EXT_F32_F32_R1_3].pipeline; break;
- case 4: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_EXT_F32_F32_R1_4].pipeline; break;
- case 5: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_EXT_F32_F32_R1_5].pipeline; break;
- default: GGML_ABORT("not implemented");
- } break;
- case GGML_TYPE_F16:
- switch (r1ptg) {
- case 2: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_EXT_F16_F32_R1_2].pipeline; break;
- case 3: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_EXT_F16_F32_R1_3].pipeline; break;
- case 4: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_EXT_F16_F32_R1_4].pipeline; break;
- case 5: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_EXT_F16_F32_R1_5].pipeline; break;
- default: GGML_ABORT("not implemented");
- } break;
- case GGML_TYPE_Q4_0:
- switch (r1ptg) {
- case 2: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_EXT_Q4_0_F32_R1_2].pipeline; break;
- case 3: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_EXT_Q4_0_F32_R1_3].pipeline; break;
- case 4: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_EXT_Q4_0_F32_R1_4].pipeline; break;
- case 5: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_EXT_Q4_0_F32_R1_5].pipeline; break;
- default: GGML_ABORT("not implemented");
- } break;
- case GGML_TYPE_Q4_1:
- switch (r1ptg) {
- case 2: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_EXT_Q4_1_F32_R1_2].pipeline; break;
- case 3: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_EXT_Q4_1_F32_R1_3].pipeline; break;
- case 4: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_EXT_Q4_1_F32_R1_4].pipeline; break;
- case 5: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_EXT_Q4_1_F32_R1_5].pipeline; break;
- default: GGML_ABORT("not implemented");
- } break;
- case GGML_TYPE_Q5_0:
- switch (r1ptg) {
- case 2: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_EXT_Q5_0_F32_R1_2].pipeline; break;
- case 3: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_EXT_Q5_0_F32_R1_3].pipeline; break;
- case 4: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_EXT_Q5_0_F32_R1_4].pipeline; break;
- case 5: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_EXT_Q5_0_F32_R1_5].pipeline; break;
- default: GGML_ABORT("not implemented");
- } break;
- case GGML_TYPE_Q5_1:
- switch (r1ptg) {
- case 2: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_EXT_Q5_1_F32_R1_2].pipeline; break;
- case 3: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_EXT_Q5_1_F32_R1_3].pipeline; break;
- case 4: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_EXT_Q5_1_F32_R1_4].pipeline; break;
- case 5: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_EXT_Q5_1_F32_R1_5].pipeline; break;
- default: GGML_ABORT("not implemented");
- } break;
- case GGML_TYPE_Q8_0:
- switch (r1ptg) {
- case 2: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_EXT_Q8_0_F32_R1_2].pipeline; break;
- case 3: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_EXT_Q8_0_F32_R1_3].pipeline; break;
- case 4: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_EXT_Q8_0_F32_R1_4].pipeline; break;
- case 5: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_EXT_Q8_0_F32_R1_5].pipeline; break;
- default: GGML_ABORT("not implemented");
- } break;
- case GGML_TYPE_MXFP4:
- switch (r1ptg) {
- case 2: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_EXT_MXFP4_F32_R1_2].pipeline; break;
- case 3: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_EXT_MXFP4_F32_R1_3].pipeline; break;
- case 4: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_EXT_MXFP4_F32_R1_4].pipeline; break;
- case 5: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_EXT_MXFP4_F32_R1_5].pipeline; break;
- default: GGML_ABORT("not implemented");
- } break;
- case GGML_TYPE_Q4_K:
- switch (r1ptg) {
- case 2: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_EXT_Q4_K_F32_R1_2].pipeline; break;
- case 3: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_EXT_Q4_K_F32_R1_3].pipeline; break;
- case 4: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_EXT_Q4_K_F32_R1_4].pipeline; break;
- case 5: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_EXT_Q4_K_F32_R1_5].pipeline; break;
- default: GGML_ABORT("not implemented");
- } break;
- case GGML_TYPE_Q5_K:
- switch (r1ptg) {
- case 2: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_EXT_Q5_K_F32_R1_2].pipeline; break;
- case 3: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_EXT_Q5_K_F32_R1_3].pipeline; break;
- case 4: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_EXT_Q5_K_F32_R1_4].pipeline; break;
- case 5: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_EXT_Q5_K_F32_R1_5].pipeline; break;
- default: GGML_ABORT("not implemented");
- } break;
- case GGML_TYPE_Q6_K:
- switch (r1ptg) {
- case 2: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_EXT_Q6_K_F32_R1_2].pipeline; break;
- case 3: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_EXT_Q6_K_F32_R1_3].pipeline; break;
- case 4: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_EXT_Q6_K_F32_R1_4].pipeline; break;
- case 5: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_EXT_Q6_K_F32_R1_5].pipeline; break;
- default: GGML_ABORT("not implemented");
- } break;
- case GGML_TYPE_IQ4_NL:
- switch (r1ptg) {
- case 2: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_EXT_IQ4_NL_F32_R1_2].pipeline; break;
- case 3: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_EXT_IQ4_NL_F32_R1_3].pipeline; break;
- case 4: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_EXT_IQ4_NL_F32_R1_4].pipeline; break;
- case 5: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_EXT_IQ4_NL_F32_R1_5].pipeline; break;
- default: GGML_ABORT("not implemented");
- } break;
- default: GGML_ABORT("not implemented");
- }
-
- ggml_metal_kargs_mul_mv_ext args = {
- /*.ne00 =*/ ne00,
- /*.ne01 =*/ ne01,
- /*.ne02 =*/ ne02,
- /*.nb00 =*/ nb00,
- /*.nb01 =*/ nb01,
- /*.nb02 =*/ nb02,
- /*.nb03 =*/ nb03,
- /*.ne10 =*/ ne10,
- /*.ne11 =*/ ne11,
- /*.ne12 =*/ ne12,
- /*.nb10 =*/ nb10,
- /*.nb11 =*/ nb11,
- /*.nb12 =*/ nb12,
- /*.nb13 =*/ nb13,
- /*.ne0 =*/ ne0,
- /*.ne1 =*/ ne1,
- /*.r2 =*/ r2,
- /*.r3 =*/ r3,
- /*.nsg =*/ nsg,
- /*.nxpsg =*/ nxpsg,
- /*.r1ptg =*/ r1ptg,
- };
-
- [encoder setComputePipelineState:pipeline];
- [encoder setBytes:&args length:sizeof(args) atIndex:0];
- [encoder setBuffer:id_src0 offset:offs_src0 atIndex:1];
- [encoder setBuffer:id_src1 offset:offs_src1 atIndex:2];
- [encoder setBuffer:id_dst offset:offs_dst atIndex:3];
-
- //printf("ne01 = %lld nr0ptg = %d\n", ne01, nr0ptg);
- [encoder dispatchThreadgroups:MTLSizeMake((ne01 + r0ptg - 1)/r0ptg, (ne11 + r1ptg - 1)/r1ptg, ne12*ne13) threadsPerThreadgroup:MTLSizeMake(32, nsg, 1)];
- } else
- // for now the matrix-matrix multiplication kernel only works on A14+/M1+ SoCs
- // AMD GPU and older A-chips will reuse matrix-vector multiplication kernel
- if ([device supportsFamily:MTLGPUFamilyApple7] &&
- !ggml_is_transposed(src0) &&
- !ggml_is_transposed(src1) &&
- src1t == GGML_TYPE_F32 &&
- ne00 % 32 == 0 && ne00 >= 64 &&
- (ne11 > ne11_mm_min || (ggml_is_quantized(src0t) && ne12 > 1))) {
- //printf("matrix: ne00 = %6d, ne01 = %6d, ne02 = %6d, ne11 = %6d, ne12 = %6d\n", ne00, ne01, ne02, ne11, ne12);
-
- // some Metal matrix data types require aligned pointers
- // ref: https://developer.apple.com/metal/Metal-Shading-Language-Specification.pdf (Table 2.5)
- switch (src0->type) {
- case GGML_TYPE_F32: GGML_ASSERT(nb01 % 16 == 0); break;
- case GGML_TYPE_F16: GGML_ASSERT(nb01 % 8 == 0); break;
- case GGML_TYPE_BF16: GGML_ASSERT(nb01 % 8 == 0); break;
- default: break;
- }
-
- id<MTLComputePipelineState> pipeline = nil;
-
- switch (src0->type) {
- case GGML_TYPE_F32: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_F32_F32 ].pipeline; break;
- case GGML_TYPE_F16: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_F16_F32 ].pipeline; break;
- case GGML_TYPE_BF16: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_BF16_F32 ].pipeline; break;
- case GGML_TYPE_Q4_0: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_Q4_0_F32 ].pipeline; break;
- case GGML_TYPE_Q4_1: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_Q4_1_F32 ].pipeline; break;
- case GGML_TYPE_Q5_0: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_Q5_0_F32 ].pipeline; break;
- case GGML_TYPE_Q5_1: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_Q5_1_F32 ].pipeline; break;
- case GGML_TYPE_Q8_0: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_Q8_0_F32 ].pipeline; break;
- case GGML_TYPE_MXFP4: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_MXFP4_F32 ].pipeline; break;
- case GGML_TYPE_Q2_K: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_Q2_K_F32 ].pipeline; break;
- case GGML_TYPE_Q3_K: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_Q3_K_F32 ].pipeline; break;
- case GGML_TYPE_Q4_K: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_Q4_K_F32 ].pipeline; break;
- case GGML_TYPE_Q5_K: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_Q5_K_F32 ].pipeline; break;
- case GGML_TYPE_Q6_K: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_Q6_K_F32 ].pipeline; break;
- case GGML_TYPE_IQ2_XXS: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_IQ2_XXS_F32].pipeline; break;
- case GGML_TYPE_IQ2_XS: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_IQ2_XS_F32 ].pipeline; break;
- case GGML_TYPE_IQ3_XXS: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_IQ3_XXS_F32].pipeline; break;
- case GGML_TYPE_IQ3_S: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_IQ3_S_F32 ].pipeline; break;
- case GGML_TYPE_IQ2_S: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_IQ2_S_F32 ].pipeline; break;
- case GGML_TYPE_IQ1_S: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_IQ1_S_F32 ].pipeline; break;
- case GGML_TYPE_IQ1_M: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_IQ1_M_F32 ].pipeline; break;
- case GGML_TYPE_IQ4_NL: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_IQ4_NL_F32 ].pipeline; break;
- case GGML_TYPE_IQ4_XS: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_IQ4_XS_F32 ].pipeline; break;
- default: GGML_ABORT("MUL MAT-MAT not implemented");
- }
-
- ggml_metal_kargs_mul_mm args = {
- /*.ne00 =*/ ne00,
- /*.ne02 =*/ ne02,
- /*.nb01 =*/ nb01,
- /*.nb02 =*/ nb02,
- /*.nb03 =*/ nb03,
- /*.ne12 =*/ ne12,
- /*.nb10 =*/ nb10,
- /*.nb11 =*/ nb11,
- /*.nb12 =*/ nb12,
- /*.nb13 =*/ nb13,
- /*.ne0 =*/ ne0,
- /*.ne1 =*/ ne1,
- /*.r2 =*/ r2,
- /*.r3 =*/ r3,
- };
-
- [encoder setComputePipelineState:pipeline];
- [encoder setBytes:&args length:sizeof(args) atIndex:0];
- [encoder setBuffer:id_src0 offset:offs_src0 atIndex:1];
- [encoder setBuffer:id_src1 offset:offs_src1 atIndex:2];
- [encoder setBuffer:id_dst offset:offs_dst atIndex:3];
-
- [encoder setThreadgroupMemoryLength:8192 atIndex:0];
- [encoder dispatchThreadgroups:MTLSizeMake((ne11 + 31)/32, (ne01 + 63)/64, ne12*ne13) threadsPerThreadgroup:MTLSizeMake(128, 1, 1)];
- } else {
- id<MTLComputePipelineState> pipeline = nil;
-
- int nsg = 0; // number of simdgroups
- int nr0 = 0; // number of src0 rows per simdgroup
- int nr1 = 1; // number of src1 rows per threadgroup
-
- size_t smem = 0; // shared memory
-
- // use custom matrix x vector kernel
- switch (src0t) {
- case GGML_TYPE_F32:
- {
- GGML_ASSERT(src1t == GGML_TYPE_F32);
- nsg = 1;
- nr0 = 1;
- nr1 = 4;
- if (ne00 == 4) {
- nr0 = 32;
- pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_F32_F32_C4].pipeline;
- } else {
- pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_F32_F32].pipeline;
- }
- } break;
- case GGML_TYPE_F16:
- {
- nsg = 1;
- nr0 = 1;
- if (src1t == GGML_TYPE_F32) {
- if (ne00 == 4) {
- nr0 = 32;
- nr1 = 4;
- pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_F16_F32_C4].pipeline;
- } else if (ne11 * ne12 < 4) {
- pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_F16_F32_1ROW].pipeline;
- } else if (ne00 >= 128 && ne01 >= 8 && ne00%4 == 0) {
- pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_F16_F32_L4].pipeline;
- nr1 = ne11;
- } else {
- pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_F16_F32].pipeline;
- nr1 = 4;
- }
- } else {
- pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_F16_F16].pipeline;
- nr1 = 4;
- }
- } break;
- case GGML_TYPE_BF16:
- {
- nsg = 1;
- nr0 = 1;
- if (src1t == GGML_TYPE_F32) {
- if (ne00 == 4) {
- nr0 = 32;
- nr1 = 4;
- pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_BF16_F32_C4].pipeline;
- } else if (ne11 * ne12 < 4) {
- pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_BF16_F32_1ROW].pipeline;
- } else if (ne00 >= 128 && ne01 >= 8 && ne00%4 == 0) {
- pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_BF16_F32_L4].pipeline;
- nr1 = ne11;
- } else {
- pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_BF16_F32].pipeline;
- nr1 = 4;
- }
- } else {
- pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_BF16_BF16].pipeline;
- nr1 = 4;
- }
- } break;
- case GGML_TYPE_Q4_0:
- {
- nsg = N_SG_Q4_0;
- nr0 = N_R0_Q4_0;
- pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_Q4_0_F32].pipeline;
- } break;
- case GGML_TYPE_Q4_1:
- {
- nsg = N_SG_Q4_1;
- nr0 = N_R0_Q4_1;
- pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_Q4_1_F32].pipeline;
- } break;
- case GGML_TYPE_Q5_0:
- {
- nsg = N_SG_Q5_0;
- nr0 = N_R0_Q5_0;
- pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_Q5_0_F32].pipeline;
- } break;
- case GGML_TYPE_Q5_1:
- {
- nsg = N_SG_Q5_1;
- nr0 = N_R0_Q5_1;
- pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_Q5_1_F32].pipeline;
- } break;
- case GGML_TYPE_Q8_0:
- {
- nsg = N_SG_Q8_0;
- nr0 = N_R0_Q8_0;
- smem = 32*sizeof(float)*N_R0_Q8_0;
- pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_Q8_0_F32].pipeline;
- } break;
- case GGML_TYPE_MXFP4:
- {
- nsg = N_SG_MXFP4;
- nr0 = N_R0_MXFP4;
- smem = 32*sizeof(float);
- pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_MXFP4_F32].pipeline;
- } break;
- case GGML_TYPE_Q2_K:
- {
- nsg = N_SG_Q2_K;
- nr0 = N_R0_Q2_K;
- pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_Q2_K_F32].pipeline;
- } break;
- case GGML_TYPE_Q3_K:
- {
- nsg = N_SG_Q3_K;
- nr0 = N_R0_Q3_K;
- pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_Q3_K_F32].pipeline;
- } break;
- case GGML_TYPE_Q4_K:
- {
- nsg = N_SG_Q4_K;
- nr0 = N_R0_Q4_K;
- pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_Q4_K_F32].pipeline;
- } break;
- case GGML_TYPE_Q5_K:
- {
- nsg = N_SG_Q5_K;
- nr0 = N_R0_Q5_K;
- pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_Q5_K_F32].pipeline;
- } break;
- case GGML_TYPE_Q6_K:
- {
- nsg = N_SG_Q6_K;
- nr0 = N_R0_Q6_K;
- pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_Q6_K_F32].pipeline;
- } break;
- case GGML_TYPE_IQ2_XXS:
- {
- nsg = N_SG_IQ2_XXS;
- nr0 = N_R0_IQ2_XXS;
- smem = 256*8+128;
- pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_IQ2_XXS_F32].pipeline;
- } break;
- case GGML_TYPE_IQ2_XS:
- {
- nsg = N_SG_IQ2_XS;
- nr0 = N_R0_IQ2_XS;
- smem = 512*8+128;
- pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_IQ2_XS_F32].pipeline;
- } break;
- case GGML_TYPE_IQ3_XXS:
- {
- nsg = N_SG_IQ3_XXS;
- nr0 = N_R0_IQ3_XXS;
- smem = 256*4+128;
- pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_IQ3_XXS_F32].pipeline;
- } break;
- case GGML_TYPE_IQ3_S:
- {
- nsg = N_SG_IQ3_S;
- nr0 = N_R0_IQ3_S;
- smem = 512*4;
- pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_IQ3_S_F32].pipeline;
- } break;
- case GGML_TYPE_IQ2_S:
- {
- nsg = N_SG_IQ2_S;
- nr0 = N_R0_IQ2_S;
- pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_IQ2_S_F32].pipeline;
- } break;
- case GGML_TYPE_IQ1_S:
- {
- nsg = N_SG_IQ1_S;
- nr0 = N_R0_IQ1_S;
- pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_IQ1_S_F32].pipeline;
- } break;
- case GGML_TYPE_IQ1_M:
- {
- nsg = N_SG_IQ1_M;
- nr0 = N_R0_IQ1_M;
- pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_IQ1_M_F32].pipeline;
- } break;
- case GGML_TYPE_IQ4_NL:
- {
- nsg = N_SG_IQ4_NL;
- nr0 = N_R0_IQ4_NL;
- smem = 32*sizeof(float);
- pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_IQ4_NL_F32].pipeline;
- } break;
- case GGML_TYPE_IQ4_XS:
- {
- nsg = N_SG_IQ4_XS;
- nr0 = N_R0_IQ4_XS;
- smem = 32*sizeof(float);
- pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_IQ4_XS_F32].pipeline;
- } break;
- default:
- {
- GGML_LOG_ERROR("Asserting on type %d\n", (int)src0t);
- GGML_ABORT("not implemented");
- }
- };
-
- ggml_metal_kargs_mul_mv args = {
- /*.ne00 =*/ ne00,
- /*.ne01 =*/ ne01,
- /*.ne02 =*/ ne02,
- /*.nb00 =*/ nb00,
- /*.nb01 =*/ nb01,
- /*.nb02 =*/ nb02,
- /*.nb03 =*/ nb03,
- /*.ne10 =*/ ne10,
- /*.ne11 =*/ ne11,
- /*.ne12 =*/ ne12,
- /*.nb10 =*/ nb10,
- /*.nb11 =*/ nb11,
- /*.nb12 =*/ nb12,
- /*.nb13 =*/ nb13,
- /*.ne0 =*/ ne0,
- /*.ne1 =*/ ne1,
- /*.r2 =*/ r2,
- /*.r3 =*/ r3,
- };
-
- [encoder setComputePipelineState:pipeline];
- [encoder setBytes:&args length:sizeof(args) atIndex:0];
- [encoder setBuffer:id_src0 offset:offs_src0 atIndex:1];
- [encoder setBuffer:id_src1 offset:offs_src1 atIndex:2];
- [encoder setBuffer:id_dst offset:offs_dst atIndex:3];
-
- if (smem > 0) {
- [encoder setThreadgroupMemoryLength:smem atIndex:0];
- }
-
- if (src0t == GGML_TYPE_Q8_0) {
- [encoder dispatchThreadgroups:MTLSizeMake((ne01 + nr0 - 1)/(nr0), (ne11 + nr1 - 1)/nr1, ne12*ne13) threadsPerThreadgroup:MTLSizeMake(32, nsg, 1)];
- } else {
- [encoder dispatchThreadgroups:MTLSizeMake((ne01 + nr0*nsg - 1)/(nr0*nsg), (ne11 + nr1 - 1)/nr1, ne12*ne13) threadsPerThreadgroup:MTLSizeMake(32, nsg, 1)];
- }
- }
- } break;
- case GGML_OP_MUL_MAT_ID:
- {
- // src2 = ids
- GGML_ASSERT(src2t == GGML_TYPE_I32);
-
- GGML_ASSERT(!ggml_is_transposed(src0));
- GGML_ASSERT(!ggml_is_transposed(src1));
-
- GGML_ASSERT(src1t == GGML_TYPE_F32);
-
- GGML_ASSERT(ne03 == 1);
- GGML_ASSERT(ne13 == 1);
-
- const uint32_t r2 = 1;
- const uint32_t r3 = 1;
-
- // find the break-even point where the matrix-matrix kernel becomes more efficient compared
- // to the matrix-vector kernel
- // ne20 = n_used_experts
- // ne21 = n_rows (batch size)
- const int ne21_mm_id_min = 32;
-
- // for now the matrix-matrix multiplication kernel only works on A14+/M1+ SoCs
- // AMD GPU and older A-chips will reuse matrix-vector multiplication kernel
- if ([device supportsFamily:MTLGPUFamilyApple7] &&
- ne00 % 32 == 0 && ne00 >= 64 &&
- (ne21 >= ne21_mm_id_min)) {
- GGML_ASSERT(ne00 % 4 == 0);
-
- // some Metal matrix data types require aligned pointers
- // ref: https://developer.apple.com/metal/Metal-Shading-Language-Specification.pdf (Table 2.5)
- switch (src0->type) {
- case GGML_TYPE_F32: GGML_ASSERT(nb01 % 16 == 0); break;
- case GGML_TYPE_F16: GGML_ASSERT(nb01 % 8 == 0); break;
- case GGML_TYPE_BF16: GGML_ASSERT(nb01 % 8 == 0); break;
- default: break;
- }
-
- // extra buffers for intermediate id mapping
- size_t offs_tpe = offs_dst + ggml_nbytes(dst);
- size_t offs_ids = offs_tpe + ggml_metal_mul_mat_id_extra_tpe(dst);
-
- {
- ggml_metal_kargs_mul_mm_id_map0 args = {
- ne02,
- ne10,
- ne11, // n_expert_used (bcast)
- nb11,
- nb12,
- ne21, // n_tokens
- ne20, // n_expert_used
- nb21,
- };
-
- id<MTLComputePipelineState> pipeline = nil;
-
- pipeline = nil;
-
- switch (ne20) {
- case 1: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_ID_MAP0_F16_NE20_1 ].pipeline; break;
- case 2: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_ID_MAP0_F16_NE20_2 ].pipeline; break;
- case 4: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_ID_MAP0_F16_NE20_4 ].pipeline; break;
- case 6: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_ID_MAP0_F16_NE20_6 ].pipeline; break;
- case 8: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_ID_MAP0_F16_NE20_8 ].pipeline; break;
- case 10: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_ID_MAP0_F16_NE20_10].pipeline; break;
- case 16: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_ID_MAP0_F16_NE20_16].pipeline; break;
- default: GGML_ABORT("missing specialization for ne20 = %d", (int) ne20);
- }
-
- GGML_ASSERT(ne02 <= (int) pipeline.maxTotalThreadsPerThreadgroup);
-
- const size_t smem = ne02*ne20*sizeof(uint16_t);
-
- GGML_ASSERT(smem <= device.maxThreadgroupMemoryLength);
-
- [encoder setComputePipelineState:pipeline];
- [encoder setBytes:&args length:sizeof(args) atIndex:0];
- [encoder setBuffer:id_src2 offset:offs_src2 atIndex:1];
- [encoder setBuffer:id_dst offset:offs_tpe atIndex:2];
- [encoder setBuffer:id_dst offset:offs_ids atIndex:3];
- [encoder setThreadgroupMemoryLength:smem atIndex:0];
-
- [encoder dispatchThreadgroups:MTLSizeMake(1, 1, 1) threadsPerThreadgroup:MTLSizeMake(ne02, 1, 1)];
- }
-
- // this barrier is always needed because the next kernel has to wait for the id maps to be computed
- ggml_metal_encode_concurrency_reset(ctx_enc);
-
- {
- id<MTLComputePipelineState> pipeline = nil;
-
- switch (src0->type) {
- case GGML_TYPE_F32: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_ID_F32_F16 ].pipeline; break;
- case GGML_TYPE_F16: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_ID_F16_F16 ].pipeline; break;
- case GGML_TYPE_BF16: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_ID_BF16_F16 ].pipeline; break;
- case GGML_TYPE_Q4_0: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q4_0_F16 ].pipeline; break;
- case GGML_TYPE_Q4_1: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q4_1_F16 ].pipeline; break;
- case GGML_TYPE_Q5_0: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q5_0_F16 ].pipeline; break;
- case GGML_TYPE_Q5_1: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q5_1_F16 ].pipeline; break;
- case GGML_TYPE_Q8_0: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q8_0_F16 ].pipeline; break;
- case GGML_TYPE_MXFP4: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_ID_MXFP4_F16 ].pipeline; break;
- case GGML_TYPE_Q2_K: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q2_K_F16 ].pipeline; break;
- case GGML_TYPE_Q3_K: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q3_K_F16 ].pipeline; break;
- case GGML_TYPE_Q4_K: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q4_K_F16 ].pipeline; break;
- case GGML_TYPE_Q5_K: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q5_K_F16 ].pipeline; break;
- case GGML_TYPE_Q6_K: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q6_K_F16 ].pipeline; break;
- case GGML_TYPE_IQ2_XXS: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ2_XXS_F16].pipeline; break;
- case GGML_TYPE_IQ2_XS: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ2_XS_F16 ].pipeline; break;
- case GGML_TYPE_IQ3_XXS: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ3_XXS_F16].pipeline; break;
- case GGML_TYPE_IQ3_S: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ3_S_F16 ].pipeline; break;
- case GGML_TYPE_IQ2_S: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ2_S_F16 ].pipeline; break;
- case GGML_TYPE_IQ1_S: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ1_S_F16 ].pipeline; break;
- case GGML_TYPE_IQ1_M: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ1_M_F16 ].pipeline; break;
- case GGML_TYPE_IQ4_NL: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ4_NL_F16 ].pipeline; break;
- case GGML_TYPE_IQ4_XS: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ4_XS_F16 ].pipeline; break;
- default: GGML_ABORT("MUL_MAT_ID not implemented");
- }
-
- ggml_metal_kargs_mul_mm_id args = {
- /*.ne00 =*/ ne00,
- /*.ne02 =*/ ne02,
- /*.nb01 =*/ nb01,
- /*.nb02 =*/ nb02,
- /*.nb03 =*/ nb03,
- /*.ne11 =*/ ne11, // n_expert_used (bcast)
- /*.nb10 =*/ nb10,
- /*.nb11 =*/ nb11,
- /*.nb12 =*/ nb12,
- /*.nb13 =*/ nb13,
- /*.ne20 =*/ ne20, // n_expert_used
- /*.ne21 =*/ ne21, // n_tokens
- /*.ne0 =*/ ne0,
- /*.ne1 =*/ ne1,
- /*.r2 =*/ r2,
- /*.r3 =*/ r3,
- };
-
- [encoder setComputePipelineState:pipeline];
- [encoder setBytes:&args length:sizeof(args) atIndex:0];
- [encoder setBuffer:id_src0 offset:offs_src0 atIndex:1];
- [encoder setBuffer:id_src1 offset:offs_src1 atIndex:2];
- [encoder setBuffer:id_dst offset:offs_tpe atIndex:3];
- [encoder setBuffer:id_dst offset:offs_ids atIndex:4];
- [encoder setBuffer:id_dst offset:offs_dst atIndex:5];
-
- [encoder setThreadgroupMemoryLength:8192 atIndex:0];
- [encoder dispatchThreadgroups:MTLSizeMake((ne21 + 31)/32, (ne01 + 63)/64, ne02) threadsPerThreadgroup:MTLSizeMake(128, 1, 1)];
- }
- } else {
- id<MTLComputePipelineState> pipeline = nil;
-
- int nsg = 0; // number of simdgroups
- int nr0 = 0; // number of src0 rows per simdgroup
- int nr1 = 1; // number of src1 rows per threadgroup
-
- size_t smem = 0; // shared memory
-
- // use custom matrix x vector kernel
- switch (src0t) {
- case GGML_TYPE_F32:
- {
- GGML_ASSERT(src1t == GGML_TYPE_F32);
- nsg = 1;
- nr0 = 1;
- pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_ID_F32_F32].pipeline;
- } break;
- case GGML_TYPE_F16:
- {
- GGML_ASSERT(src1t == GGML_TYPE_F32);
- nsg = 1;
- nr0 = 1;
- pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_ID_F16_F32].pipeline;
- } break;
- case GGML_TYPE_BF16:
- {
- GGML_ASSERT(src1t == GGML_TYPE_F32);
- nsg = 1;
- nr0 = 1;
- pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_ID_BF16_F32].pipeline;
- } break;
- case GGML_TYPE_Q4_0:
- {
- nsg = N_SG_Q4_0;
- nr0 = N_R0_Q4_0;
- pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_ID_Q4_0_F32].pipeline;
- } break;
- case GGML_TYPE_Q4_1:
- {
- nsg = N_SG_Q4_1;
- nr0 = N_R0_Q4_1;
- pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_ID_Q4_1_F32].pipeline;
- } break;
- case GGML_TYPE_Q5_0:
- {
- nsg = N_SG_Q5_0;
- nr0 = N_R0_Q5_0;
- pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_ID_Q5_0_F32].pipeline;
- } break;
- case GGML_TYPE_Q5_1:
- {
- nsg = N_SG_Q5_1;
- nr0 = N_R0_Q5_1;
- pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_ID_Q5_1_F32].pipeline;
- } break;
- case GGML_TYPE_Q8_0:
- {
- nsg = N_SG_Q8_0;
- nr0 = N_R0_Q8_0;
- smem = 32*sizeof(float)*N_R0_Q8_0;
- pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_ID_Q8_0_F32].pipeline;
- } break;
- case GGML_TYPE_MXFP4:
- {
- nsg = N_SG_MXFP4;
- nr0 = N_R0_MXFP4;
- smem = 32*sizeof(float);
- pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_ID_MXFP4_F32].pipeline;
- } break;
- case GGML_TYPE_Q2_K:
- {
- nsg = N_SG_Q2_K;
- nr0 = N_R0_Q2_K;
- pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_ID_Q2_K_F32].pipeline;
- } break;
- case GGML_TYPE_Q3_K:
- {
- nsg = N_SG_Q3_K;
- nr0 = N_R0_Q3_K;
- pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_ID_Q3_K_F32].pipeline;
- } break;
- case GGML_TYPE_Q4_K:
- {
- nsg = N_SG_Q4_K;
- nr0 = N_R0_Q4_K;
- pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_ID_Q4_K_F32].pipeline;
- } break;
- case GGML_TYPE_Q5_K:
- {
- nsg = N_SG_Q5_K;
- nr0 = N_R0_Q5_K;
- pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_ID_Q5_K_F32].pipeline;
- } break;
- case GGML_TYPE_Q6_K:
- {
- nsg = N_SG_Q6_K;
- nr0 = N_R0_Q6_K;
- pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_ID_Q6_K_F32].pipeline;
- } break;
- case GGML_TYPE_IQ2_XXS:
- {
- nsg = N_SG_IQ2_XXS;
- nr0 = N_R0_IQ2_XXS;
- smem = 256*8+128;
- pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ2_XXS_F32].pipeline;
- } break;
- case GGML_TYPE_IQ2_XS:
- {
- nsg = N_SG_IQ2_XS;
- nr0 = N_R0_IQ2_XS;
- smem = 512*8+128;
- pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ2_XS_F32].pipeline;
- } break;
- case GGML_TYPE_IQ3_XXS:
- {
- nsg = N_SG_IQ3_XXS;
- nr0 = N_R0_IQ3_XXS;
- smem = 256*4+128;
- pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ3_XXS_F32].pipeline;
- } break;
- case GGML_TYPE_IQ3_S:
- {
- nsg = N_SG_IQ3_S;
- nr0 = N_R0_IQ3_S;
- smem = 512*4;
- pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ3_S_F32].pipeline;
- } break;
- case GGML_TYPE_IQ2_S:
- {
- nsg = N_SG_IQ2_S;
- nr0 = N_R0_IQ2_S;
- pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ2_S_F32].pipeline;
- } break;
- case GGML_TYPE_IQ1_S:
- {
- nsg = N_SG_IQ1_S;
- nr0 = N_R0_IQ1_S;
- pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ1_S_F32].pipeline;
- } break;
- case GGML_TYPE_IQ1_M:
- {
- nsg = N_SG_IQ1_M;
- nr0 = N_R0_IQ1_M;
- pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ1_M_F32].pipeline;
- } break;
- case GGML_TYPE_IQ4_NL:
- {
- nsg = N_SG_IQ4_NL;
- nr0 = N_R0_IQ4_NL;
- smem = 32*sizeof(float);
- pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ4_NL_F32].pipeline;
- } break;
- case GGML_TYPE_IQ4_XS:
- {
- nsg = N_SG_IQ4_XS;
- nr0 = N_R0_IQ4_XS;
- smem = 32*sizeof(float);
- pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ4_XS_F32].pipeline;
- } break;
- default:
- {
- GGML_LOG_ERROR("Asserting on type %d\n", (int)src2t);
- GGML_ABORT("not implemented");
- }
- };
-
- if (ggml_is_quantized(src0t)) {
- GGML_ASSERT(ne00 >= nsg*nr0);
- }
-
- ggml_metal_kargs_mul_mv_id args = {
- /*.nei0 =*/ ne20,
- /*.nei1 =*/ ne21,
- /*.nbi1 =*/ nb21,
- /*.ne00 =*/ ne00,
- /*.ne01 =*/ ne01,
- /*.ne02 =*/ ne02,
- /*.nb00 =*/ nb00,
- /*.nb01 =*/ nb01,
- /*.nb02 =*/ nb02,
- /*.ne10 =*/ ne10,
- /*.ne11 =*/ ne11,
- /*.ne12 =*/ ne12,
- /*.ne13 =*/ ne13,
- /*.nb10 =*/ nb10,
- /*.nb11 =*/ nb11,
- /*.nb12 =*/ nb12,
- /*.ne0 =*/ ne0,
- /*.ne1 =*/ ne1,
- /*.nb1 =*/ nb1,
- };
-
- [encoder setComputePipelineState:pipeline];
- [encoder setBytes:&args length:sizeof(args) atIndex:0];
- [encoder setBuffer:id_src0 offset:offs_src0 atIndex:1];
- [encoder setBuffer:id_src1 offset:offs_src1 atIndex:2];
- [encoder setBuffer:id_dst offset:offs_dst atIndex:3];
- [encoder setBuffer:id_src2 offset:offs_src2 atIndex:4];
-
- const int64_t _ne1 = 1;
- const int64_t ne123 = ne20*ne21;
-
- if (smem > 0) {
- [encoder setThreadgroupMemoryLength:smem atIndex:0];
- }
-
- if (src0t == GGML_TYPE_Q8_0) {
- [encoder dispatchThreadgroups:MTLSizeMake((ne01 + nr0 - 1)/(nr0), (_ne1 + nr1 - 1)/nr1, ne123) threadsPerThreadgroup:MTLSizeMake(32, nsg, 1)];
- } else {
- [encoder dispatchThreadgroups:MTLSizeMake((ne01 + nr0*nsg - 1)/(nr0*nsg), (_ne1 + nr1 - 1)/nr1, ne123) threadsPerThreadgroup:MTLSizeMake(32, nsg, 1)];
- }
- }
- } break;
- case GGML_OP_GET_ROWS:
- {
- id<MTLComputePipelineState> pipeline = nil;
-
- switch (src0->type) {
- case GGML_TYPE_F32: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_GET_ROWS_F32 ].pipeline; break;
- case GGML_TYPE_F16: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_GET_ROWS_F16 ].pipeline; break;
- case GGML_TYPE_BF16: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_GET_ROWS_BF16 ].pipeline; break;
- case GGML_TYPE_Q4_0: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_GET_ROWS_Q4_0 ].pipeline; break;
- case GGML_TYPE_Q4_1: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_GET_ROWS_Q4_1 ].pipeline; break;
- case GGML_TYPE_Q5_0: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_GET_ROWS_Q5_0 ].pipeline; break;
- case GGML_TYPE_Q5_1: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_GET_ROWS_Q5_1 ].pipeline; break;
- case GGML_TYPE_Q8_0: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_GET_ROWS_Q8_0 ].pipeline; break;
- case GGML_TYPE_MXFP4: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_GET_ROWS_MXFP4 ].pipeline; break;
- case GGML_TYPE_Q2_K: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_GET_ROWS_Q2_K ].pipeline; break;
- case GGML_TYPE_Q3_K: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_GET_ROWS_Q3_K ].pipeline; break;
- case GGML_TYPE_Q4_K: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_GET_ROWS_Q4_K ].pipeline; break;
- case GGML_TYPE_Q5_K: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_GET_ROWS_Q5_K ].pipeline; break;
- case GGML_TYPE_Q6_K: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_GET_ROWS_Q6_K ].pipeline; break;
- case GGML_TYPE_IQ2_XXS: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ2_XXS].pipeline; break;
- case GGML_TYPE_IQ2_XS: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ2_XS ].pipeline; break;
- case GGML_TYPE_IQ3_XXS: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ3_XXS].pipeline; break;
- case GGML_TYPE_IQ3_S: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ3_S ].pipeline; break;
- case GGML_TYPE_IQ2_S: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ2_S ].pipeline; break;
- case GGML_TYPE_IQ1_S: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ1_S ].pipeline; break;
- case GGML_TYPE_IQ1_M: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ1_M ].pipeline; break;
- case GGML_TYPE_IQ4_NL: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ4_NL ].pipeline; break;
- case GGML_TYPE_IQ4_XS: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ4_XS ].pipeline; break;
- case GGML_TYPE_I32: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_GET_ROWS_I32 ].pipeline; break;
- default: GGML_ABORT("not implemented");
- }
-
- ggml_metal_kargs_get_rows args = {
- /*.ne00 =*/ ne00,
- /*.nb01 =*/ nb01,
- /*.nb02 =*/ nb02,
- /*.ne10 =*/ ne10,
- /*.nb10 =*/ nb10,
- /*.nb11 =*/ nb11,
- /*.nb1 =*/ nb1,
- /*.nb2 =*/ nb2,
- };
-
- [encoder setComputePipelineState:pipeline];
- [encoder setBytes:&args length:sizeof(args) atIndex:0];
- [encoder setBuffer:id_src0 offset:offs_src0 atIndex:1];
- [encoder setBuffer:id_src1 offset:offs_src1 atIndex:2];
- [encoder setBuffer:id_dst offset:offs_dst atIndex:3];
-
- [encoder dispatchThreadgroups:MTLSizeMake(ne10, ne11, 1) threadsPerThreadgroup:MTLSizeMake(32, 1, 1)];
- } break;
- case GGML_OP_SET_ROWS:
- {
- id<MTLComputePipelineState> pipeline = nil;
-
- switch (dst->type) {
- case GGML_TYPE_F32: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_SET_ROWS_F32 ].pipeline; break;
- case GGML_TYPE_F16: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_SET_ROWS_F16 ].pipeline; break;
- case GGML_TYPE_BF16: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_SET_ROWS_BF16 ].pipeline; break;
- case GGML_TYPE_Q8_0: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_SET_ROWS_Q8_0 ].pipeline; break;
- case GGML_TYPE_Q4_0: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_SET_ROWS_Q4_0 ].pipeline; break;
- case GGML_TYPE_Q4_1: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_SET_ROWS_Q4_1 ].pipeline; break;
- case GGML_TYPE_Q5_0: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_SET_ROWS_Q5_0 ].pipeline; break;
- case GGML_TYPE_Q5_1: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_SET_ROWS_Q5_1 ].pipeline; break;
- case GGML_TYPE_IQ4_NL: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_SET_ROWS_IQ4_NL].pipeline; break;
- default: GGML_ABORT("not implemented");
- }
-
- const int32_t nk0 = ne0/ggml_blck_size(dst->type);
-
- int nth = 32; // SIMD width
-
- while (nth < nk0 && nth < (int) pipeline.maxTotalThreadsPerThreadgroup) {
- nth *= 2;
- }
-
- int nrptg = 1;
- if (nth > nk0) {
- nrptg = (nth + nk0 - 1)/nk0;
- nth = nk0;
-
- if (nrptg*nth > (int) pipeline.maxTotalThreadsPerThreadgroup) {
- nrptg--;
- }
- }
-
- nth = MIN(nth, nk0);
-
- ggml_metal_kargs_set_rows args = {
- /*.nk0 =*/ nk0,
- /*.ne01 =*/ ne01,
- /*.nb01 =*/ nb01,
- /*.nb02 =*/ nb02,
- /*.nb03 =*/ nb03,
- /*.ne11 =*/ ne11,
- /*.ne12 =*/ ne12,
- /*.nb10 =*/ nb10,
- /*.nb11 =*/ nb11,
- /*.nb12 =*/ nb12,
- /*.nb1 =*/ nb1,
- /*.nb2 =*/ nb2,
- /*.nb3 =*/ nb3,
- };
-
- [encoder setComputePipelineState:pipeline];
- [encoder setBytes:&args length:sizeof(args) atIndex:0];
- [encoder setBuffer:id_src0 offset:offs_src0 atIndex:1];
- [encoder setBuffer:id_src1 offset:offs_src1 atIndex:2];
- [encoder setBuffer:id_dst offset:offs_dst atIndex:3];
-
- [encoder dispatchThreadgroups:MTLSizeMake((ne01 + nrptg - 1)/nrptg, ne02, ne03) threadsPerThreadgroup:MTLSizeMake(nth, nrptg, 1)];
- } break;
- case GGML_OP_RMS_NORM:
- {
- GGML_ASSERT(ne00 % 4 == 0);
- GGML_ASSERT(ggml_is_contiguous_rows(src0));
-
- float eps;
- memcpy(&eps, dst->op_params, sizeof(float));
-
- ggml_metal_kargs_rms_norm args = {
- /*.ne00 =*/ ne00,
- /*.ne00_4 =*/ ne00/4,
- /*.nb1 =*/ nb1,
- /*.nb2 =*/ nb2,
- /*.nb3 =*/ nb3,
- /*.eps =*/ eps,
- /*.nef1 =*/ { ne01 },
- /*.nef2 =*/ { ne02 },
- /*.nef3 =*/ { ne03 },
- /*.nbf1 =*/ { nb01 },
- /*.nbf2 =*/ { nb02 },
- /*.nbf3 =*/ { nb03 },
- };
-
- size_t offs_fuse[2] = { 0, 0 };
- id<MTLBuffer> id_fuse[2] = { id_src0, id_src0 };
-
- // d[0] = rms_norm(a)
- // d[1] = mul(d[0], b)
- // d[2] = add(d[1], c)
- if (ctx_dev->use_fusion) {
- ops[0] = GGML_OP_RMS_NORM;
- ops[1] = GGML_OP_MUL;
- ops[2] = GGML_OP_ADD;
-
- for (n_fuse = 0; n_fuse <= 1 && idx + n_fuse + 1 < idx_end; ++n_fuse) {
- if (!ggml_can_fuse(gf, idx + n_fuse, ops + n_fuse, 2)) {
- break;
- }
-
- if (nodes[n_fuse] != nodes[n_fuse + 1]->src[0]) {
- break;
- }
-
- if (nodes[n_fuse + 1]->src[1]->ne[0] != node->ne[0]) {
- break;
- }
-
- if (!ggml_is_contiguous_rows(nodes[n_fuse + 1]->src[1])) {
- break;
- }
-
- if (nodes[n_fuse + 1]->type != GGML_TYPE_F32) {
- break;
- }
-
- ctx_dev->fuse_cnt[nodes[n_fuse + 1]->op]++;
-
- id_fuse[n_fuse] = ggml_metal_get_buffer(nodes[n_fuse + 1]->src[1], &offs_fuse[n_fuse]);
-
- args.nef1[n_fuse + 1] = nodes[n_fuse + 1]->src[1]->ne[1];
- args.nef2[n_fuse + 1] = nodes[n_fuse + 1]->src[1]->ne[2];
- args.nef3[n_fuse + 1] = nodes[n_fuse + 1]->src[1]->ne[3];
-
- args.nbf1[n_fuse + 1] = nodes[n_fuse + 1]->src[1]->nb[1];
- args.nbf2[n_fuse + 1] = nodes[n_fuse + 1]->src[1]->nb[2];
- args.nbf3[n_fuse + 1] = nodes[n_fuse + 1]->src[1]->nb[3];
- }
-
- ++n_fuse;
-
- if (ctx_dev->debug_fusion > 1 && n_fuse > 1) {
- if (n_fuse == 2) {
- GGML_LOG_DEBUG("%s: fuse: RMS_NORM + MUL\n", __func__);
- }
- if (n_fuse == 3) {
- GGML_LOG_DEBUG("%s: fuse: RMS_NORM + MUL + ADD\n", __func__);
- }
- }
- }
-
- if (n_fuse > 1) {
- id_dst = ggml_metal_get_buffer(nodes[n_fuse - 1], &offs_dst);
-
- for (int i = 1; i < n_fuse; ++i) {
- if (!ggml_metal_encode_concurrency_check(ctx_enc, nodes[i])) {
- ggml_metal_encode_concurrency_reset(ctx_enc);
-
- break;
- }
- }
- }
-
- const id<MTLComputePipelineState> pipeline = ggml_metal_get_pipeline_rms_norm(backend, node, n_fuse);
-
- int nth = 32; // SIMD width
-
- while (nth < ne00/4 && nth < (int) pipeline.maxTotalThreadsPerThreadgroup) {
- nth *= 2;
- }
-
- nth = MIN(nth, (int) pipeline.maxTotalThreadsPerThreadgroup);
- nth = MIN(nth, ne00/4);
-
- [encoder setComputePipelineState:pipeline];
- [encoder setBytes:&args length:sizeof(args) atIndex:0];
- [encoder setBuffer:id_src0 offset:offs_src0 atIndex:1];
- [encoder setBuffer:id_fuse[0] offset:offs_fuse[0] atIndex:2];
- [encoder setBuffer:id_fuse[1] offset:offs_fuse[1] atIndex:3];
- [encoder setBuffer:id_dst offset:offs_dst atIndex:4];
-
- [encoder setThreadgroupMemoryLength:32*sizeof(float) atIndex:0];
-
- [encoder dispatchThreadgroups:MTLSizeMake(ne01, ne02, ne03) threadsPerThreadgroup:MTLSizeMake(nth, 1, 1)];
- } break;
- case GGML_OP_L2_NORM:
- {
- GGML_ASSERT(ne00 % 4 == 0);
- GGML_ASSERT(ggml_is_contiguous_1(src0));
-
- float eps;
- memcpy(&eps, dst->op_params, sizeof(float));
-
- id<MTLComputePipelineState> pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_L2_NORM].pipeline;
-
- int nth = 32; // SIMD width
-
- while (nth < ne00/4 && nth < (int) pipeline.maxTotalThreadsPerThreadgroup) {
- nth *= 2;
- }
-
- nth = MIN(nth, (int) pipeline.maxTotalThreadsPerThreadgroup);
- nth = MIN(nth, ne00/4);
-
- ggml_metal_kargs_l2_norm args = {
- /*.ne00 =*/ ne00,
- /*.ne00_4 =*/ ne00/4,
- /*.nb01 =*/ nb01,
- /*.eps =*/ eps,
- };
-
- [encoder setComputePipelineState:pipeline];
- [encoder setBytes:&args length:sizeof(args) atIndex:0];
- [encoder setBuffer:id_src0 offset:offs_src0 atIndex:1];
- [encoder setBuffer:id_dst offset:offs_dst atIndex:2];
-
- [encoder setThreadgroupMemoryLength:32*sizeof(float) atIndex:0];
-
- const int64_t nrows = ggml_nrows(src0);
-
- [encoder dispatchThreadgroups:MTLSizeMake(nrows, 1, 1) threadsPerThreadgroup:MTLSizeMake(nth, 1, 1)];
- } break;
- case GGML_OP_GROUP_NORM:
- {
- GGML_ASSERT(ggml_is_contiguous(src0));
-
- float eps;
- memcpy(&eps, dst->op_params + 1, sizeof(float));
-
- const int32_t n_groups = ((const int32_t *) dst->op_params)[0];
-
- int nth = 32; // SIMD width
-
- //while (nth < ne00/4 && nth < 1024) {
- // nth *= 2;
- //}
-
- id<MTLComputePipelineState> pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_GROUP_NORM].pipeline;
-
- ggml_metal_kargs_group_norm args = {
- /*.ne00 =*/ ne00,
- /*.ne01 =*/ ne01,
- /*.ne02 =*/ ne02,
- /*.nb00 =*/ nb00,
- /*.nb01 =*/ nb01,
- /*.nb02 =*/ nb02,
- /*.n_groups =*/ n_groups,
- /*.eps =*/ eps,
- };
-
- [encoder setComputePipelineState:pipeline];
- [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
- [encoder setBuffer:id_dst offset:offs_dst atIndex:1];
- [encoder setBytes:&args length:sizeof(args) atIndex:2];
- [encoder setThreadgroupMemoryLength:32*sizeof(float) atIndex:0];
-
- [encoder dispatchThreadgroups:MTLSizeMake(n_groups, 1, 1) threadsPerThreadgroup:MTLSizeMake(nth, 1, 1)];
- } break;
- case GGML_OP_NORM:
- {
- GGML_ASSERT(ne00 % 4 == 0);
- GGML_ASSERT(ggml_is_contiguous_1(src0));
-
- float eps;
- memcpy(&eps, dst->op_params, sizeof(float));
-
- id<MTLComputePipelineState> pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_NORM].pipeline;
-
- int nth = 32; // SIMD width
-
- while (nth < ne00/4 && nth < (int) pipeline.maxTotalThreadsPerThreadgroup) {
- nth *= 2;
- }
-
- nth = MIN(nth, (int) pipeline.maxTotalThreadsPerThreadgroup);
- nth = MIN(nth, ne00/4);
-
- ggml_metal_kargs_norm args = {
- /*.ne00 =*/ ne00,
- /*.ne00_4 =*/ ne00/4,
- /*.nb01 =*/ nb01,
- /*.eps =*/ eps,
- };
-
- [encoder setComputePipelineState:pipeline];
- [encoder setBytes:&args length:sizeof(args) atIndex:0];
- [encoder setBuffer:id_src0 offset:offs_src0 atIndex:1];
- [encoder setBuffer:id_dst offset:offs_dst atIndex:2];
-
- [encoder setThreadgroupMemoryLength:32*sizeof(float) atIndex:0];
-
- const int64_t nrows = ggml_nrows(src0);
-
- [encoder dispatchThreadgroups:MTLSizeMake(nrows, 1, 1) threadsPerThreadgroup:MTLSizeMake(nth, 1, 1)];
- } break;
- case GGML_OP_ROPE:
- {
- // make sure we have one or more position id(ne10) per token(ne02)
- GGML_ASSERT(ne10 % ne02 == 0);
- GGML_ASSERT(ne10 >= ne02);
-
- const int nth = MIN(1024, ne00);
-
- const int n_past = ((const int32_t *) dst->op_params)[0];
- const int n_dims = ((const int32_t *) dst->op_params)[1];
- const int mode = ((const int32_t *) dst->op_params)[2];
- // skip 3, n_ctx, used in GLM RoPE, unimplemented in metal
- const int n_ctx_orig = ((const int32_t *) dst->op_params)[4];
-
- float freq_base;
- float freq_scale;
- float ext_factor;
- float attn_factor;
- float beta_fast;
- float beta_slow;
-
- memcpy(&freq_base, (const int32_t *) dst->op_params + 5, sizeof(float));
- memcpy(&freq_scale, (const int32_t *) dst->op_params + 6, sizeof(float));
- memcpy(&ext_factor, (const int32_t *) dst->op_params + 7, sizeof(float));
- memcpy(&attn_factor, (const int32_t *) dst->op_params + 8, sizeof(float));
- memcpy(&beta_fast, (const int32_t *) dst->op_params + 9, sizeof(float));
- memcpy(&beta_slow, (const int32_t *) dst->op_params + 10, sizeof(float));
-
- const bool is_neox = mode & GGML_ROPE_TYPE_NEOX;
- const bool is_mrope = mode & GGML_ROPE_TYPE_MROPE;
- const bool is_vision = mode == GGML_ROPE_TYPE_VISION;
-
- // mrope
- const int sect_0 = ((const int32_t *) dst->op_params)[11];
- const int sect_1 = ((const int32_t *) dst->op_params)[12];
- const int sect_2 = ((const int32_t *) dst->op_params)[13];
- const int sect_3 = ((const int32_t *) dst->op_params)[14];
-
- id<MTLComputePipelineState> pipeline = nil;
-
- if (is_neox) {
- switch (src0->type) {
- case GGML_TYPE_F32: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_ROPE_NEOX_F32].pipeline; break;
- case GGML_TYPE_F16: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_ROPE_NEOX_F16].pipeline; break;
- default: GGML_ABORT("fatal error");
- };
- } else if (is_mrope && !is_vision) {
- GGML_ASSERT(ne10*4 >= ne02); // need at least 4 pos per token
- switch (src0->type) {
- case GGML_TYPE_F32: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_ROPE_MULTI_F32].pipeline; break;
- case GGML_TYPE_F16: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_ROPE_MULTI_F16].pipeline; break;
- default: GGML_ABORT("fatal error");
- };
- } else if (is_vision) {
- GGML_ASSERT(ne10*4 >= ne02); // need at least 4 pos per token
- switch (src0->type) {
- case GGML_TYPE_F32: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_ROPE_VISION_F32].pipeline; break;
- case GGML_TYPE_F16: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_ROPE_VISION_F16].pipeline; break;
- default: GGML_ABORT("fatal error");
- };
- } else {
- switch (src0->type) {
- case GGML_TYPE_F32: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_ROPE_NORM_F32].pipeline; break;
- case GGML_TYPE_F16: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_ROPE_NORM_F16].pipeline; break;
- default: GGML_ABORT("fatal error");
- };
- }
-
- ggml_metal_kargs_rope args = {
- /*.ne00 =*/ ne00,
- /*.ne01 =*/ ne01,
- /*.ne02 =*/ ne02,
- /*.ne03 =*/ ne03,
- /*.nb00 =*/ nb00,
- /*.nb01 =*/ nb01,
- /*.nb02 =*/ nb02,
- /*.nb03 =*/ nb03,
- /*.ne0 =*/ ne0,
- /*.ne1 =*/ ne1,
- /*.ne2 =*/ ne2,
- /*.ne3 =*/ ne3,
- /*.nb0 =*/ nb0,
- /*.nb1 =*/ nb1,
- /*.nb2 =*/ nb2,
- /*.nb3 =*/ nb3,
- /*.n_past =*/ n_past,
- /*.n_dims =*/ n_dims,
- /*.n_ctx_orig =*/ n_ctx_orig,
- /*.freq_base =*/ freq_base,
- /*.freq_scale =*/ freq_scale,
- /*.ext_factor =*/ ext_factor,
- /*.attn_factor =*/ attn_factor,
- /*.beta_fast =*/ beta_fast,
- /*.beta_slow =*/ beta_slow,
- /* sect_0 =*/ sect_0,
- /* sect_1 =*/ sect_1,
- /* sect_2 =*/ sect_2,
- /* sect_3 =*/ sect_3,
- };
-
- [encoder setComputePipelineState:pipeline];
- [encoder setBytes:&args length:sizeof(args) atIndex:0];
- [encoder setBuffer:id_src0 offset:offs_src0 atIndex:1];
- [encoder setBuffer:id_src1 offset:offs_src1 atIndex:2];
- if (id_src2 != nil) {
- [encoder setBuffer:id_src2 offset:offs_src2 atIndex:3];
- } else {
- [encoder setBuffer:id_src0 offset:offs_src0 atIndex:3];
- }
- [encoder setBuffer:id_dst offset:offs_dst atIndex:4];
-
- [encoder dispatchThreadgroups:MTLSizeMake(ne01, ne02, ne03) threadsPerThreadgroup:MTLSizeMake(nth, 1, 1)];
- } break;
- case GGML_OP_IM2COL:
- {
- GGML_ASSERT(ggml_is_contiguous(src1));
- GGML_ASSERT(src1->type == GGML_TYPE_F32);
- GGML_ASSERT( dst->type == GGML_TYPE_F16 || dst->type == GGML_TYPE_F32);
-
- const int32_t s0 = ((const int32_t *)(dst->op_params))[0];
- const int32_t s1 = ((const int32_t *)(dst->op_params))[1];
- const int32_t p0 = ((const int32_t *)(dst->op_params))[2];
- const int32_t p1 = ((const int32_t *)(dst->op_params))[3];
- const int32_t d0 = ((const int32_t *)(dst->op_params))[4];
- const int32_t d1 = ((const int32_t *)(dst->op_params))[5];
-
- const bool is_2D = ((const int32_t *)(dst->op_params))[6] == 1;
-
- const int32_t N = src1->ne[is_2D ? 3 : 2];
- const int32_t IC = src1->ne[is_2D ? 2 : 1];
- const int32_t IH = is_2D ? src1->ne[1] : 1;
- const int32_t IW = src1->ne[0];
-
- const int32_t KH = is_2D ? src0->ne[1] : 1;
- const int32_t KW = src0->ne[0];
-
- const int32_t OH = is_2D ? dst->ne[2] : 1;
- const int32_t OW = dst->ne[1];
-
- const int32_t CHW = IC * KH * KW;
-
- const uint64_t ofs0 = src1->nb[is_2D ? 3 : 2] / 4;
- const uint64_t ofs1 = src1->nb[is_2D ? 2 : 1] / 4;
-
- id<MTLComputePipelineState> pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_IM2COL_F32].pipeline;
-
- const bool is_gt_mttpt = ((size_t)(N * KH * KW)) > pipeline.maxTotalThreadsPerThreadgroup;
-
- switch (dst->type) {
- case GGML_TYPE_F32: {
- pipeline = (is_gt_mttpt ?
- ctx->kernels[GGML_METAL_KERNEL_TYPE_IM2COL_EXT_F32].pipeline
- :
- ctx->kernels[GGML_METAL_KERNEL_TYPE_IM2COL_F32].pipeline);
- } break;
- case GGML_TYPE_F16: {
- pipeline = (is_gt_mttpt ?
- ctx->kernels[GGML_METAL_KERNEL_TYPE_IM2COL_EXT_F16].pipeline
- :
- ctx->kernels[GGML_METAL_KERNEL_TYPE_IM2COL_F16].pipeline);
- } break;
- default: GGML_ABORT("fatal error");
- };
-
- ggml_metal_kargs_im2col args = {
- /*.ofs0 =*/ ofs0,
- /*.ofs1 =*/ ofs1,
- /*.IW =*/ IW,
- /*.IH =*/ IH,
- /*.CHW =*/ CHW,
- /*.s0 =*/ s0,
- /*.s1 =*/ s1,
- /*.p0 =*/ p0,
- /*.p1 =*/ p1,
- /*.d0 =*/ d0,
- /*.d1 =*/ d1,
- /*.N =*/ N,
- /*.KH =*/ KH,
- /*.KW =*/ KW,
- /*.KHW =*/ KH * KW,
- };
-
- [encoder setComputePipelineState:pipeline];
- [encoder setBuffer:id_src1 offset:offs_src1 atIndex:0];
- [encoder setBuffer:id_dst offset:offs_dst atIndex:1];
- [encoder setBytes:&args length:sizeof(args) atIndex:2];
-
- if (is_gt_mttpt) {
- const uint64_t n_threads = MIN(pipeline.maxTotalThreadsPerThreadgroup, (uint64_t)N);
-
- const int64_t quotient = N / n_threads + (N % n_threads > 0 ? 1 : 0);
-
- [encoder dispatchThreadgroups:MTLSizeMake(quotient * CHW, OH, OW) threadsPerThreadgroup:MTLSizeMake(n_threads, 1, 1)];
- } else {
- [encoder dispatchThreadgroups:MTLSizeMake(IC, OH, OW) threadsPerThreadgroup:MTLSizeMake(N, KH, KW)];
- }
- } break;
- case GGML_OP_CONV_TRANSPOSE_1D:
- {
- GGML_ASSERT(ggml_is_contiguous(src0));
- GGML_ASSERT(ggml_is_contiguous(src1));
- GGML_ASSERT(src0->type == GGML_TYPE_F16 || src0->type == GGML_TYPE_F32);
- GGML_ASSERT(src1->type == GGML_TYPE_F32);
- GGML_ASSERT( dst->type == GGML_TYPE_F32);
-
- const int32_t s0 = ((const int32_t *)(dst->op_params))[0];
-
- const int32_t IC = src1->ne[1];
- const int32_t IL = src1->ne[0];
-
- const int32_t K = src0->ne[0];
-
- const int32_t OL = dst->ne[0];
- const int32_t OC = dst->ne[1];
-
- id<MTLComputePipelineState> pipeline;
-
- switch (src0->type) {
- case GGML_TYPE_F32: {
- pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_CONV_TRANSPOSE_1D_F32_F32].pipeline;
- } break;
- case GGML_TYPE_F16: {
- pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_CONV_TRANSPOSE_1D_F16_F32].pipeline;
- } break;
- default: GGML_ABORT("fatal error");
- };
-
- ggml_metal_kargs_conv_transpose_1d args = {
- /*.IC =*/ IC,
- /*.IL =*/ IL,
- /*.K =*/ K,
- /*.s0 =*/ s0,
- /*.nb0 =*/ nb0,
- /*.nb1 =*/ nb1,
- };
-
- [encoder setComputePipelineState:pipeline];
- [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
- [encoder setBuffer:id_src1 offset:offs_src1 atIndex:1];
- [encoder setBuffer:id_dst offset:offs_dst atIndex:2];
- [encoder setBytes:&args length:sizeof(args) atIndex:3];
-
- [encoder dispatchThreadgroups:MTLSizeMake(OL, OC, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)];
- } break;
- case GGML_OP_UPSCALE:
- {
- GGML_ASSERT(src0->type == GGML_TYPE_F32);
-
- const float sf0 = (float)ne0/src0->ne[0];
- const float sf1 = (float)ne1/src0->ne[1];
- const float sf2 = (float)ne2/src0->ne[2];
- const float sf3 = (float)ne3/src0->ne[3];
-
- const id<MTLComputePipelineState> pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_UPSCALE_F32].pipeline;
-
- ggml_metal_kargs_upscale args = {
- /*.ne00 =*/ ne00,
- /*.ne01 =*/ ne01,
- /*.ne02 =*/ ne02,
- /*.ne03 =*/ ne03,
- /*.nb00 =*/ nb00,
- /*.nb01 =*/ nb01,
- /*.nb02 =*/ nb02,
- /*.nb03 =*/ nb03,
- /*.ne0 =*/ ne0,
- /*.ne1 =*/ ne1,
- /*.ne2 =*/ ne2,
- /*.ne3 =*/ ne3,
- /*.nb0 =*/ nb0,
- /*.nb1 =*/ nb1,
- /*.nb2 =*/ nb2,
- /*.nb3 =*/ nb3,
- /*.sf0 =*/ sf0,
- /*.sf1 =*/ sf1,
- /*.sf2 =*/ sf2,
- /*.sf3 =*/ sf3
- };
-
- [encoder setComputePipelineState:pipeline];
- [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
- [encoder setBuffer:id_dst offset:offs_dst atIndex:1];
- [encoder setBytes:&args length:sizeof(args) atIndex:2];
-
- const int nth = MIN((int) pipeline.maxTotalThreadsPerThreadgroup, ne0);
-
- [encoder dispatchThreadgroups:MTLSizeMake(ne1, ne2, ne3) threadsPerThreadgroup:MTLSizeMake(nth, 1, 1)];
- } break;
- case GGML_OP_PAD:
- {
- GGML_ASSERT(src0->type == GGML_TYPE_F32);
-
- id<MTLComputePipelineState> pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_PAD_F32].pipeline;
-
- ggml_metal_kargs_pad args = {
- /*.ne00 =*/ ne00,
- /*.ne01 =*/ ne01,
- /*.ne02 =*/ ne02,
- /*.ne03 =*/ ne03,
- /*.nb00 =*/ nb00,
- /*.nb01 =*/ nb01,
- /*.nb02 =*/ nb02,
- /*.nb03 =*/ nb03,
- /*.ne0 =*/ ne0,
- /*.ne1 =*/ ne1,
- /*.ne2 =*/ ne2,
- /*.ne3 =*/ ne3,
- /*.nb0 =*/ nb0,
- /*.nb1 =*/ nb1,
- /*.nb2 =*/ nb2,
- /*.nb3 =*/ nb3
- };
-
- [encoder setComputePipelineState:pipeline];
- [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
- [encoder setBuffer:id_dst offset:offs_dst atIndex:1];
- [encoder setBytes:&args length:sizeof(args) atIndex:2];
-
- const int nth = MIN(1024, ne0);
-
- [encoder dispatchThreadgroups:MTLSizeMake(ne1, ne2, ne3) threadsPerThreadgroup:MTLSizeMake(nth, 1, 1)];
- } break;
- case GGML_OP_PAD_REFLECT_1D:
- {
- GGML_ASSERT(src0->type == GGML_TYPE_F32);
-
- const int32_t p0 = ((const int32_t *)(dst->op_params))[0];
- const int32_t p1 = ((const int32_t *)(dst->op_params))[1];
-
- id<MTLComputePipelineState> pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_PAD_REFLECT_1D_F32].pipeline;
-
- ggml_metal_kargs_pad_reflect_1d args = {
- /*.ne00 =*/ ne00,
- /*.ne01 =*/ ne01,
- /*.ne02 =*/ ne02,
- /*.ne03 =*/ ne03,
- /*.nb00 =*/ nb00,
- /*.nb01 =*/ nb01,
- /*.nb02 =*/ nb02,
- /*.nb03 =*/ nb03,
- /*.ne0 =*/ ne0,
- /*.ne1 =*/ ne1,
- /*.ne2 =*/ ne2,
- /*.ne3 =*/ ne3,
- /*.nb0 =*/ nb0,
- /*.nb1 =*/ nb1,
- /*.nb2 =*/ nb2,
- /*.nb3 =*/ nb3,
- /*.p0 =*/ p0,
- /*.p1 =*/ p1
- };
-
- [encoder setComputePipelineState:pipeline];
- [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
- [encoder setBuffer:id_dst offset:offs_dst atIndex:1];
- [encoder setBytes:&args length:sizeof(args) atIndex:2];
-
- const int nth = MIN(1024, ne0);
-
- [encoder dispatchThreadgroups:MTLSizeMake(ne1, ne2, ne3) threadsPerThreadgroup:MTLSizeMake(nth, 1, 1)];
- } break;
- case GGML_OP_ARANGE:
- {
- GGML_ASSERT(dst->type == GGML_TYPE_F32);
-
- float start;
- float step;
-
- memcpy(&start, ((const int32_t *) dst->op_params) + 0, sizeof(float));
- memcpy(&step, ((const int32_t *) dst->op_params) + 2, sizeof(float));
-
- id<MTLComputePipelineState> pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_ARANGE_F32].pipeline;
-
- ggml_metal_kargs_arange args = {
- /*.ne0 =*/ ne0,
- /*.start =*/ start,
- /*.step =*/ step
- };
-
- [encoder setComputePipelineState:pipeline];
- [encoder setBuffer:id_dst offset:offs_dst atIndex:0];
- [encoder setBytes:&args length:sizeof(args) atIndex:1];
-
- const int nth = MIN(1024, ne0);
-
- [encoder dispatchThreadgroups:MTLSizeMake(1, 1, 1) threadsPerThreadgroup:MTLSizeMake(nth, 1, 1)];
- } break;
- case GGML_OP_TIMESTEP_EMBEDDING:
- {
- GGML_ASSERT(src0->type == GGML_TYPE_F32);
-
- const int dim = dst->op_params[0];
- const int max_period = dst->op_params[1];
-
- const int half = dim / 2;
-
- id<MTLComputePipelineState> pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_TIMESTEP_EMBEDDING_F32].pipeline;
-
- ggml_metal_kargs_timestep_embedding args = {
- /*.nb1 =*/ nb1,
- /*.dim =*/ dim,
- /*.max_period =*/ max_period
- };
-
- [encoder setComputePipelineState:pipeline];
- [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
- [encoder setBuffer:id_dst offset:offs_dst atIndex:1];
- [encoder setBytes:&args length:sizeof(args) atIndex:2];
-
- const int nth = MIN(1024, half);
-
- [encoder dispatchThreadgroups:MTLSizeMake(ne00, 1, 1) threadsPerThreadgroup:MTLSizeMake(nth, 1, 1)];
- } break;
- case GGML_OP_ARGSORT:
- {
- GGML_ASSERT(src0->type == GGML_TYPE_F32);
- GGML_ASSERT( dst->type == GGML_TYPE_I32);
-
- const int nrows = ggml_nrows(src0);
-
- enum ggml_sort_order order = (enum ggml_sort_order) dst->op_params[0];
-
- // bitonic sort requires the number of elements to be power of 2
- int64_t ne00_padded = 1;
- while (ne00_padded < ne00) {
- ne00_padded *= 2;
- }
-
- // Metal kernels require the buffer size to be multiple of 16 bytes
- // https://developer.apple.com/documentation/metal/mtlcomputecommandencoder/1443142-setthreadgroupmemorylength
- const int mem_size = GGML_PAD(ne00_padded*sizeof(int32_t), 16);
-
- id<MTLComputePipelineState> pipeline = nil;
-
- switch (order) {
- case GGML_SORT_ORDER_ASC: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_ARGSORT_F32_I32_ASC].pipeline; break;
- case GGML_SORT_ORDER_DESC: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_ARGSORT_F32_I32_DESC].pipeline; break;
- default: GGML_ABORT("fatal error");
- };
-
- ggml_metal_kargs_argsort args = {
- /*.ncols =*/ ne00,
- /*.ncols_pad =*/ ne00_padded
- };
-
- [encoder setComputePipelineState:pipeline];
- [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
- [encoder setBuffer:id_dst offset:offs_dst atIndex:1];
- [encoder setBytes:&args length:sizeof(args) atIndex:2];
- [encoder setThreadgroupMemoryLength:mem_size atIndex:0];
-
- [encoder dispatchThreadgroups:MTLSizeMake(1, nrows, 1) threadsPerThreadgroup:MTLSizeMake(ne00_padded, 1, 1)];
- } break;
- case GGML_OP_LEAKY_RELU:
- {
- GGML_ASSERT(src0->type == GGML_TYPE_F32);
-
- float slope;
- memcpy(&slope, dst->op_params, sizeof(float));
-
- id<MTLComputePipelineState> pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_LEAKY_RELU_F32].pipeline;
-
- ggml_metal_kargs_leaky_relu args = {
- /*.slope =*/ slope
- };
-
- [encoder setComputePipelineState:pipeline];
- [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
- [encoder setBuffer:id_dst offset:offs_dst atIndex:1];
- [encoder setBytes:&args length:sizeof(args) atIndex:2];
-
- const int64_t n = ggml_nelements(dst);
-
- [encoder dispatchThreadgroups:MTLSizeMake(n, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)];
- } break;
- case GGML_OP_FLASH_ATTN_EXT:
- {
- GGML_ASSERT(ne00 % 4 == 0);
- GGML_ASSERT(ne11 % 32 == 0);
-
- GGML_ASSERT(src0->type == GGML_TYPE_F32);
- GGML_ASSERT(src1->type == src2->type);
-
- //GGML_ASSERT(ggml_are_same_shape (src1, src2));
- GGML_ASSERT(ne11 == ne21);
- GGML_ASSERT(ne12 == ne22);
-
- struct ggml_tensor * src3 = node->src[3]; // mask
- struct ggml_tensor * src4 = node->src[4]; // sinks
-
- size_t offs_src3 = 0;
- size_t offs_src4 = 0;
-
- id<MTLBuffer> id_src3 = src3 ? ggml_metal_get_buffer(src3, &offs_src3) : nil;
- id<MTLBuffer> id_src4 = src4 ? ggml_metal_get_buffer(src4, &offs_src4) : nil;
-
- GGML_ASSERT(!src3 || src3->type == GGML_TYPE_F16);
- GGML_ASSERT(!src3 || src3->ne[1] >= GGML_PAD(src0->ne[1], 8) &&
- "the Flash-Attention Metal kernel requires the mask to be padded to 8 and at least n_queries big");
-
- const int64_t ne30 = src3 ? src3->ne[0] : 0; GGML_UNUSED(ne30);
- //const int64_t ne31 = src3 ? src3->ne[1] : 0;
- const int64_t ne32 = src3 ? src3->ne[2] : 0; GGML_UNUSED(ne32);
- const int64_t ne33 = src3 ? src3->ne[3] : 0; GGML_UNUSED(ne33);
-
- const uint64_t nb30 = src3 ? src3->nb[0] : 0; GGML_UNUSED(nb30);
- const uint64_t nb31 = src3 ? src3->nb[1] : 0;
- const uint64_t nb32 = src3 ? src3->nb[2] : 0; GGML_UNUSED(nb32);
- const uint64_t nb33 = src3 ? src3->nb[3] : 0; GGML_UNUSED(nb33);
-
- float scale;
- float max_bias;
- float logit_softcap;
-
- memcpy(&scale, ((const int32_t *) dst->op_params) + 0, sizeof(scale));
- memcpy(&max_bias, ((const int32_t *) dst->op_params) + 1, sizeof(max_bias));
- memcpy(&logit_softcap, ((const int32_t *) dst->op_params) + 2, sizeof(logit_softcap));
-
- if (logit_softcap != 0.0f) {
- scale /= logit_softcap;
- }
-
- const bool has_mask = src3 != NULL;
- const bool has_sinks = src4 != NULL;
- const bool has_bias = max_bias != 0.0f;
- const bool has_scap = logit_softcap != 0.0f;
-
- const uint32_t n_head = src0->ne[2];
- const uint32_t n_head_log2 = 1u << (uint32_t) floorf(log2f((float) n_head));
-
- const float m0 = powf(2.0f, -(max_bias ) / n_head_log2);
- const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_head_log2);
-
- GGML_ASSERT(ne01 < 65536);
-
- if (!ggml_metal_flash_attn_ext_use_vec(dst)) {
- // half8x8 kernel
- const int64_t nqptg = 8; // queries per threadgroup !! sync with kernel template arguments !!
- const int64_t ncpsg = 64; // cache values per simdgroup !! sync with kernel template arguments !!
-
- GGML_ASSERT(nqptg <= 32);
- GGML_ASSERT(nqptg % 8 == 0);
- GGML_ASSERT(ncpsg % 32 == 0);
-
- const int is_q = ggml_is_quantized(src1->type) ? 1 : 0;
-
- // 2*(2*ncpsg)
- // ncpsg soft_max values + ncpsg mask values
- //
- // 16*32*(nsg)
- // the shared memory needed for the simdgroups to load the KV cache
- // each thread loads (dequantizes) 16 head elements, there are 32 threads in th SG
- //
-#define FATTN_SMEM(nsg) (GGML_PAD((nqptg*(ne00 + 2*GGML_PAD(ne20, 64) + 2*(2*ncpsg)) + is_q*(16*32*(nsg)))*(sizeof(float)/2), 16))
-
- //int64_t nsgmax = 4;
- //
- //if (is_q) {
- // nsgmax = 2;
- // while (true) {
- // const size_t smem = FATTN_SMEM(nsgmax);
- // if (smem > device.maxThreadgroupMemoryLength/2) {
- // break;
- // }
- // nsgmax *= 2;
- // }
- // nsgmax /= 2;
- //}
-
- // simdgroups per threadgroup (a.k.a. warps)
- //nsg = ne01 <= nqptg ? MAX(4, MIN(nsgmax, MIN(ne11/ncpsg, (int64_t) pipeline.maxTotalThreadsPerThreadgroup/32))) : 4;
- int32_t nsg = 4;
-
- const size_t smem = FATTN_SMEM(nsg);
-
- ggml_metal_kargs_flash_attn_ext args = {
- /*.ne01 =*/ ne01,
- /*.ne02 =*/ ne02,
- /*.ne03 =*/ ne03,
- /*.nb01 =*/ nb01,
- /*.nb02 =*/ nb02,
- /*.nb03 =*/ nb03,
- /*.ne11 =*/ ne11,
- /*.ne_12_2 =*/ ne12,
- /*.ne_12_3 =*/ ne13,
- /*.ns10 =*/ nb11/nb10,
- /*.nb11 =*/ nb11,
- /*.nb12 =*/ nb12,
- /*.nb13 =*/ nb13,
- /*.ns20 =*/ nb21/nb20,
- /*.nb21 =*/ nb21,
- /*.nb22 =*/ nb22,
- /*.nb23 =*/ nb23,
- /*.ne32 =*/ ne32,
- /*.ne33 =*/ ne33,
- /*.nb31 =*/ nb31,
- /*.nb32 =*/ nb32,
- /*.nb33 =*/ nb33,
- /*.ne1 =*/ ne1,
- /*.ne2 =*/ ne2,
- /*.ne3 =*/ ne3,
- /*.scale =*/ scale,
- /*.max_bias =*/ max_bias,
- /*.m0 =*/ m0,
- /*.m1 =*/ m1,
- /*.n_head_log2 =*/ n_head_log2,
- /*.logit_softcap =*/ logit_softcap,
- };
-
- id<MTLComputePipelineState> pipeline = ggml_metal_get_pipeline_flash_attn_ext(backend, node, has_mask, has_sinks, has_bias, has_scap, nsg);
-
- [encoder setComputePipelineState:pipeline];
- [encoder setBytes:&args length:sizeof(args) atIndex:0];
- [encoder setBuffer:id_src0 offset:offs_src0 atIndex:1];
- [encoder setBuffer:id_src1 offset:offs_src1 atIndex:2];
- [encoder setBuffer:id_src2 offset:offs_src2 atIndex:3];
- if (id_src3) {
- [encoder setBuffer:id_src3 offset:offs_src3 atIndex:4];
- } else {
- [encoder setBuffer:id_src0 offset:offs_src0 atIndex:4];
- }
- if (id_src4) {
- [encoder setBuffer:id_src4 offset:offs_src4 atIndex:5];
- } else {
- [encoder setBuffer:id_src0 offset:offs_src0 atIndex:5];
- }
-
- [encoder setBuffer:id_dst offset:offs_dst atIndex:6];
-
- //printf("smem: %zu, max: %zu, nsg = %d, ne02 = %d, ne12 = %d\n", smem, device.maxThreadgroupMemoryLength, (int) nsg, ne02, ne12);
- GGML_ASSERT(smem <= device.maxThreadgroupMemoryLength);
- [encoder setThreadgroupMemoryLength:smem atIndex:0];
- [encoder dispatchThreadgroups:MTLSizeMake((ne01 + nqptg - 1)/nqptg, ne02, ne03) threadsPerThreadgroup:MTLSizeMake(32, nsg, 1)];
-#undef FATTN_SMEM
- } else {
- // half4x4 kernel
- const int64_t nqptg = 1; // queries per threadgroup !! sync with kernel template arguments !!
- const int64_t ncpsg = 32; // cache values per simdgroup !! sync with kernel template arguments !!
- const int64_t nkpsg = 1*ncpsg;
-
- GGML_ASSERT(nqptg <= 32);
- GGML_ASSERT(nqptg % 1 == 0);
- GGML_ASSERT(ncpsg % 32 == 0);
-
- // ne00 + 2*ncpsg*(nsg)
- // for each query, we load it as f16 in shared memory (ne00)
- // and store the soft_max values and the mask
- //
- // ne20*(nsg)
- // each simdgroup has a full f32 head vector in shared mem to accumulate results
- //
-#define FATTN_SMEM(nsg) (GGML_PAD((nqptg*(GGML_PAD(ne00, 128) + 4*ncpsg*(nsg)) + 2*GGML_PAD(ne20, 128)*(nsg))*(sizeof(float)/2), 16))
-
- int64_t nsgmax = 2;
- while (true) {
- const size_t smem = FATTN_SMEM(nsgmax);
- // avoid using more than half of the threadgroup memory - can cause slow downs especially for large head sizes
- if (smem > device.maxThreadgroupMemoryLength/2) {
- break;
- }
- nsgmax *= 2;
- }
- nsgmax /= 2;
-
- // simdgroups per threadgroup (a.k.a. warps)
- //const int64_t nsgt = MAX(2, MIN(nsgmax, MIN((ne11 + nkpsg - 1)/(nkpsg), (int64_t) pipeline.maxTotalThreadsPerThreadgroup/32)));
- const int64_t nsgt = MAX(2, MIN(nsgmax, MIN((ne11 + nkpsg - 1)/(nkpsg), (int64_t) 1024/32)));
-
- int64_t nsg = 1;
- while (nsg <= nsgt) {
- nsg *= 2;
- }
- nsg /= 2;
-
- // workgroups
- // each workgroup handles nsg*nkpsg cache values
- int32_t nwg = 1;
- if (false) {
- // for small KV caches, we could launch a single workgroup and write the results directly to dst/
- // however, this does not lead to significant improvement, so disabled
- nwg = 1;
- nsg = 4;
- } else {
- nwg = 32;
- nsg = 1;
- while (2*nwg*nsg*nkpsg < ne11 && nsg < 4) {
- nsg *= 2;
- }
- }
-
- ggml_metal_kargs_flash_attn_ext_vec args = {
- /*.ne01 =*/ ne01,
- /*.ne02 =*/ ne02,
- /*.ne03 =*/ ne03,
- /*.nb01 =*/ nb01,
- /*.nb02 =*/ nb02,
- /*.nb03 =*/ nb03,
- /*.ne11 =*/ ne11,
- /*.ne_12_2 =*/ ne12,
- /*.ne_12_3 =*/ ne13,
- /*.ns10 =*/ nb11/nb10,
- /*.nb11 =*/ nb11,
- /*.nb12 =*/ nb12,
- /*.nb13 =*/ nb13,
- /*.ns20 =*/ nb21/nb20,
- /*.nb21 =*/ nb21,
- /*.nb22 =*/ nb22,
- /*.nb23 =*/ nb23,
- /*.ne32 =*/ ne32,
- /*.ne33 =*/ ne33,
- /*.nb31 =*/ nb31,
- /*.nb32 =*/ nb32,
- /*.nb33 =*/ nb33,
- /*.ne1 =*/ ne1,
- /*.ne2 =*/ ne2,
- /*.ne3 =*/ ne3,
- /*.scale =*/ scale,
- /*.max_bias =*/ max_bias,
- /*.m0 =*/ m0,
- /*.m1 =*/ m1,
- /*.n_head_log2 =*/ n_head_log2,
- /*.logit_softcap =*/ logit_softcap,
- };
-
- id<MTLComputePipelineState> pipeline = ggml_metal_get_pipeline_flash_attn_ext_vec(backend, node, has_mask, has_sinks, has_bias, has_scap, nsg, nwg);
-
- GGML_ASSERT(nsg*32 <= (int) pipeline.maxTotalThreadsPerThreadgroup);
-
- [encoder setComputePipelineState:pipeline];
- [encoder setBytes:&args length:sizeof(args) atIndex:0];
- [encoder setBuffer:id_src0 offset:offs_src0 atIndex:1];
- [encoder setBuffer:id_src1 offset:offs_src1 atIndex:2];
- [encoder setBuffer:id_src2 offset:offs_src2 atIndex:3];
- if (id_src3) {
- [encoder setBuffer:id_src3 offset:offs_src3 atIndex:4];
- } else {
- [encoder setBuffer:id_src0 offset:offs_src0 atIndex:4];
- }
- if (id_src4) {
- [encoder setBuffer:id_src4 offset:offs_src4 atIndex:5];
- } else {
- [encoder setBuffer:id_src0 offset:offs_src0 atIndex:5];
- }
-
- const size_t smem = FATTN_SMEM(nsg);
-
- //printf("smem: %zu, max: %zu, nsg = %d, nsgmax = %d\n", smem, device.maxThreadgroupMemoryLength, (int) nsg, (int) nsgmax);
- GGML_ASSERT(smem <= device.maxThreadgroupMemoryLength);
-
- if (nwg == 1) {
- // using 1 workgroup -> write the result directly into dst
- [encoder setBuffer:id_dst offset:offs_dst atIndex:6];
-
- [encoder setThreadgroupMemoryLength:smem atIndex:0];
- [encoder dispatchThreadgroups:MTLSizeMake((ne01 + nqptg - 1)/nqptg, ne02, ne03*nwg) threadsPerThreadgroup:MTLSizeMake(32, nsg, 1)];
- } else {
- // sanity checks
- GGML_ASSERT(ne01*ne02*ne03 == ne1*ne2*ne3);
- GGML_ASSERT(ne1*ne2*ne3 <= (1u << 31));
-
- // write the results from each workgroup into a temp buffer
- const size_t offs_tmp = offs_dst + ggml_nbytes(dst);
- [encoder setBuffer:id_dst offset:offs_tmp atIndex:6];
-
- [encoder setThreadgroupMemoryLength:smem atIndex:0];
- [encoder dispatchThreadgroups:MTLSizeMake((ne01 + nqptg - 1)/nqptg, ne02, ne03*nwg) threadsPerThreadgroup:MTLSizeMake(32, nsg, 1)];
-
- // sync the 2 kernels
- ggml_metal_encode_concurrency_reset(ctx_enc);
-
- // reduce the results from the workgroups
- {
- const int32_t nrows = ne1*ne2*ne3;
-
- ggml_metal_kargs_flash_attn_ext_vec_reduce args0 = {
- nrows,
- };
-
- id<MTLComputePipelineState> pipeline0 = ggml_metal_get_pipeline_flash_attn_ext_vec_reduce(backend, node, ne20, nwg);
-
- [encoder setComputePipelineState:pipeline0];
- [encoder setBytes:&args0 length:sizeof(args0) atIndex:0];
- [encoder setBuffer:id_dst offset:offs_tmp atIndex:1];
- [encoder setBuffer:id_dst offset:offs_dst atIndex:2];
-
- //printf("ne1 = %d, ne2 = %d, ne3 = %d, ne20 = %d\n", ne1, ne2, ne3, ne20);
- [encoder dispatchThreadgroups:MTLSizeMake(nrows, 1, 1) threadsPerThreadgroup:MTLSizeMake(32*nwg, 1, 1)];
- }
- }
-#undef FATTN_SMEM
- }
- } break;
- case GGML_OP_DUP:
- case GGML_OP_CPY:
- case GGML_OP_CONT:
- {
- id<MTLComputePipelineState> pipeline = nil;
-
- switch (src0t) {
- case GGML_TYPE_F32:
- {
- GGML_ASSERT(ne0 % ggml_blck_size(dst->type) == 0);
-
- switch (dstt) {
- case GGML_TYPE_F32: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_CPY_F32_F32].pipeline; break;
- case GGML_TYPE_I32: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_CPY_F32_I32].pipeline; break;
- case GGML_TYPE_F16: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_CPY_F32_F16].pipeline; break;
- case GGML_TYPE_BF16: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_CPY_F32_BF16].pipeline; break;
- case GGML_TYPE_Q8_0: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_CPY_F32_Q8_0].pipeline; break;
- case GGML_TYPE_Q4_0: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_CPY_F32_Q4_0].pipeline; break;
- case GGML_TYPE_Q4_1: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_CPY_F32_Q4_1].pipeline; break;
- case GGML_TYPE_Q5_0: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_CPY_F32_Q5_0].pipeline; break;
- case GGML_TYPE_Q5_1: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_CPY_F32_Q5_1].pipeline; break;
- case GGML_TYPE_IQ4_NL: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_CPY_F32_IQ4_NL].pipeline; break;
- default: GGML_ABORT("not implemented");
- };
- } break;
- case GGML_TYPE_I32:
- {
- switch (dstt) {
- case GGML_TYPE_F32: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_CPY_I32_F32].pipeline; break;
- default: GGML_ABORT("not implemented");
- };
- } break;
- case GGML_TYPE_F16:
- {
- switch (dstt) {
- case GGML_TYPE_F32: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_CPY_F16_F32].pipeline; break;
- case GGML_TYPE_F16: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_CPY_F16_F16].pipeline; break;
- default: GGML_ABORT("not implemented");
- };
- } break;
- case GGML_TYPE_BF16:
- {
- switch (dstt) {
- case GGML_TYPE_F32: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_CPY_BF16_F32].pipeline; break;
- case GGML_TYPE_BF16: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_CPY_BF16_BF16].pipeline; break;
- default: GGML_ABORT("not implemented");
- };
- } break;
- case GGML_TYPE_Q4_0:
- {
- switch (dstt) {
- case GGML_TYPE_F32: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_CPY_Q4_0_F32].pipeline; break;
- case GGML_TYPE_F16: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_CPY_Q4_0_F16].pipeline; break;
- default: GGML_ABORT("not implemented");
- };
- } break;
- case GGML_TYPE_Q4_1:
- {
- switch (dstt) {
- case GGML_TYPE_F32: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_CPY_Q4_1_F32].pipeline; break;
- case GGML_TYPE_F16: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_CPY_Q4_1_F16].pipeline; break;
- default: GGML_ABORT("not implemented");
- };
- } break;
- case GGML_TYPE_Q5_0:
- {
- switch (dstt) {
- case GGML_TYPE_F32: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_CPY_Q5_0_F32].pipeline; break;
- case GGML_TYPE_F16: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_CPY_Q5_0_F16].pipeline; break;
- default: GGML_ABORT("not implemented");
- };
- } break;
- case GGML_TYPE_Q5_1:
- {
- switch (dstt) {
- case GGML_TYPE_F32: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_CPY_Q5_1_F32].pipeline; break;
- case GGML_TYPE_F16: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_CPY_Q5_1_F16].pipeline; break;
- default: GGML_ABORT("not implemented");
- };
- } break;
- case GGML_TYPE_Q8_0:
- {
- switch (dstt) {
- case GGML_TYPE_F32: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_CPY_Q8_0_F32].pipeline; break;
- case GGML_TYPE_F16: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_CPY_Q8_0_F16].pipeline; break;
- default: GGML_ABORT("not implemented");
- };
- } break;
- default: GGML_ABORT("not implemented");
- }
-
- GGML_ASSERT(ne00 % ggml_blck_size(src0->type) == 0);
-
- // TODO: support
- //const int32_t nk00 = ne00/ggml_blck_size(dst->type);
- const int32_t nk00 = ne00;
-
- int nth = 32; // SIMD width
-
- while (nth < nk00 && nth < (int) pipeline.maxTotalThreadsPerThreadgroup) {
- nth *= 2;
- }
-
- nth = MIN(nth, (int) pipeline.maxTotalThreadsPerThreadgroup);
-
- // when rows are small, we can batch them together in a single threadgroup
- int nrptg = 1;
-
- // TODO: relax this constraint in the future
- if (ggml_blck_size(src0->type) == 1 && ggml_blck_size(dst->type) == 1) {
- if (nth > nk00) {
- nrptg = (nth + nk00 - 1)/nk00;
- nth = nk00;
-
- if (nrptg*nth > (int) pipeline.maxTotalThreadsPerThreadgroup) {
- nrptg--;
- }
- }
- }
-
- nth = MIN(nth, nk00);
-
- ggml_metal_kargs_cpy args = {
- /*.ne00 =*/ nk00,
- /*.ne01 =*/ ne01,
- /*.ne02 =*/ ne02,
- /*.ne03 =*/ ne03,
- /*.nb00 =*/ nb00,
- /*.nb01 =*/ nb01,
- /*.nb02 =*/ nb02,
- /*.nb03 =*/ nb03,
- /*.ne0 =*/ ne0,
- /*.ne1 =*/ ne1,
- /*.ne2 =*/ ne2,
- /*.ne3 =*/ ne3,
- /*.nb0 =*/ nb0,
- /*.nb1 =*/ nb1,
- /*.nb2 =*/ nb2,
- /*.nb3 =*/ nb3,
- };
-
- [encoder setComputePipelineState:pipeline];
- [encoder setBytes:&args length:sizeof(args) atIndex:0];
- [encoder setBuffer:id_src0 offset:offs_src0 atIndex:1];
- [encoder setBuffer:id_dst offset:offs_dst atIndex:2];
-
- [encoder dispatchThreadgroups:MTLSizeMake((ne01 + nrptg - 1)/nrptg, ne02, ne03) threadsPerThreadgroup:MTLSizeMake(nth, nrptg, 1)];
- } break;
- case GGML_OP_POOL_2D:
- {
- GGML_ASSERT(ggml_is_contiguous(src0));
- GGML_ASSERT(src0t == GGML_TYPE_F32 && src0t == dstt);
-
- const int32_t * opts = dst->op_params;
- enum ggml_op_pool op = opts[0];
-
- id<MTLComputePipelineState> pipeline = nil;
- switch (src0t) {
- case GGML_TYPE_F32: {
- switch(op) {
- case GGML_OP_POOL_AVG:
- pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_POOL_2D_AVG_F32].pipeline; break;
- case GGML_OP_POOL_MAX:
- pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_POOL_2D_MAX_F32].pipeline; break;
- default: GGML_ASSERT(false && "not implemented");
- }
- } break;
- default: GGML_ASSERT(false && "not implemented");
- }
-
- const int32_t k0 = opts[1];
- const int32_t k1 = opts[2];
- const int32_t s0 = opts[3];
- const int32_t s1 = opts[4];
- const int32_t p0 = opts[5];
- const int32_t p1 = opts[6];
-
- const int64_t IH = src0->ne[1];
- const int64_t IW = src0->ne[0];
-
- const int64_t N = dst->ne[3];
- const int64_t OC = dst->ne[2];
- const int64_t OH = dst->ne[1];
- const int64_t OW = dst->ne[0];
-
- const int64_t parallel_elements = N * OC * OH * OW;
- const int64_t n_threads = MIN((int64_t)[pipeline maxTotalThreadsPerThreadgroup], parallel_elements);
- const int64_t n_tg = (parallel_elements + n_threads - 1) / n_threads;
-
- ggml_metal_kargs_pool_2d args_pool_2d = {
- /* .k0 = */ k0,
- /* .k1 = */ k1,
- /* .s0 = */ s0,
- /* .s1 = */ s1,
- /* .p0 = */ p0,
- /* .p1 = */ p1,
- /* .IH = */ IH,
- /* .IW = */ IW,
- /* .OH = */ OH,
- /* .OW = */ OW,
- /* .parallel_elements = */ parallel_elements
- };
-
- [encoder setComputePipelineState:pipeline];
- [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
- [encoder setBuffer:id_dst offset:offs_dst atIndex:1];
- [encoder setBytes:&args_pool_2d length:sizeof(args_pool_2d) atIndex:2];
-
- [encoder dispatchThreadgroups:MTLSizeMake(n_tg, 1, 1) threadsPerThreadgroup:MTLSizeMake(n_threads, 1, 1)];
- } break;
- case GGML_OP_ARGMAX:
- {
- GGML_ASSERT(src0->type == GGML_TYPE_F32);
- GGML_ASSERT(ggml_is_contiguous_1(src0));
- GGML_ASSERT(nb00 == ggml_type_size(src0->type));
-
- const int64_t nrows = ggml_nrows(src0);
-
- int nth = 32; // SIMD width
- while (nth < ne00 && nth*ne01*ne02*ne03 < 256) {
- nth *= 2;
- }
-
- id<MTLComputePipelineState> pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_ARGMAX].pipeline;
-
- [encoder setComputePipelineState:pipeline];
- [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
- [encoder setBuffer:id_dst offset:offs_dst atIndex:1];
- [encoder setBytes:&ne00 length:sizeof( int64_t) atIndex:2];
- [encoder setBytes:&nb01 length:sizeof(uint64_t) atIndex:3];
- [encoder setThreadgroupMemoryLength:32*sizeof(float) atIndex:0];
- [encoder setThreadgroupMemoryLength:32*sizeof(int32_t) atIndex:1];
-
- [encoder dispatchThreadgroups:MTLSizeMake(nrows, 1, 1) threadsPerThreadgroup:MTLSizeMake(nth, 1, 1)];
- } break;
- default:
- {
- GGML_LOG_ERROR("%s: error: node %3d, op = %8s not implemented\n", __func__, idx, ggml_op_name(dst->op));
- GGML_ABORT("fatal error");
- }
- }
-
- if (ctx_dev->debug_graph > 0) {
- if (n_fuse > 1) {
- GGML_LOG_DEBUG("%s: fuse %d ops\n", __func__, n_fuse);
- }
- }
-
- // update the mem ranges in the encoding context
- for (int i = 0; i < n_fuse; ++i) {
- if (!ggml_metal_encode_concurrency_add(ctx_enc, nodes[i])) {
- ggml_metal_encode_concurrency_reset(ctx_enc);
- }
- }
-
- return n_fuse;
-}
-
-static enum ggml_status ggml_metal_graph_compute(
- ggml_backend_t backend,
- struct ggml_cgraph * gf) {
- struct ggml_backend_metal_context * ctx = backend->context;
- struct ggml_backend_metal_device_context * ctx_dev = backend->device->context;
-
- // number of nodes encoded by the main thread (empirically determined)
- const int n_main = 64;
-
- // number of threads in addition to the main thread
- const int n_cb = ctx->n_cb;
-
- // submit the ggml compute graph to the GPU by creating command buffers and encoding the ops in them
- // the first n_nodes_0 are encoded and submitted for processing directly by the calling thread
- // while these nodes are processing, we start n_cb threads to enqueue the rest of the nodes
- // each thread creates it's own command buffer and enqueues the ops in parallel
- //
- // tests on M1 Pro and M2 Ultra using LLaMA models, show that optimal values for n_cb are 1 or 2
-
- @autoreleasepool {
- ctx->gf = gf;
-
- ctx->n_nodes_0 = MIN(n_main, gf->n_nodes);
- ctx->n_nodes_1 = gf->n_nodes - ctx->n_nodes_0;
-
- ctx->n_nodes_per_cb = (ctx->n_nodes_1 + ctx->n_cb - 1) / ctx->n_cb;
-
- const bool should_capture = ctx->capture_next_compute;
- if (should_capture) {
- ctx->capture_next_compute = false;
-
- // make sure all previous computations have finished before starting the capture
- if (ctx->cmd_buf_last) {
- [ctx->cmd_buf_last waitUntilCompleted];
- ctx->cmd_buf_last = nil;
- }
-
- if (!ctx->capture_started) {
- // create capture scope
- ctx->capture_scope = [[MTLCaptureManager sharedCaptureManager] newCaptureScopeWithDevice:ctx_dev->mtl_device];
-
- MTLCaptureDescriptor * descriptor = [MTLCaptureDescriptor new];
- descriptor.captureObject = ctx->capture_scope;
- descriptor.destination = MTLCaptureDestinationGPUTraceDocument;
- descriptor.outputURL = [NSURL fileURLWithPath:[NSString stringWithFormat:@"/tmp/perf-metal.gputrace"]];
-
- NSError * error = nil;
- if (![[MTLCaptureManager sharedCaptureManager] startCaptureWithDescriptor:descriptor error:&error]) {
- GGML_LOG_ERROR("%s: error: unable to start capture '%s'\n", __func__, [[error localizedDescription] UTF8String]);
- } else {
- [ctx->capture_scope beginScope];
- ctx->capture_started = true;
- }
- }
- }
-
- // the main thread commits the first few commands immediately
- // cmd_buf[n_cb]
- {
- id<MTLCommandBuffer> cmd_buf = [ctx->queue commandBufferWithUnretainedReferences];
- [cmd_buf retain];
-
- if (ctx->cmd_bufs[n_cb].obj) {
- [ctx->cmd_bufs[n_cb].obj release];
- }
- ctx->cmd_bufs[n_cb].obj = cmd_buf;
-
- [cmd_buf enqueue];
-
- ctx->encode_async(n_cb);
- }
-
- // remember the command buffer for the next iteration
- ctx->cmd_buf_last = ctx->cmd_bufs[n_cb].obj;
-
- // prepare the rest of the command buffers asynchronously (optional)
- // cmd_buf[0.. n_cb)
- for (int cb_idx = 0; cb_idx < n_cb; ++cb_idx) {
- id<MTLCommandBuffer> cmd_buf = [ctx->queue commandBufferWithUnretainedReferences];
- [cmd_buf retain];
-
- if (ctx->cmd_bufs[cb_idx].obj) {
- [ctx->cmd_bufs[cb_idx].obj release];
- }
- ctx->cmd_bufs[cb_idx].obj = cmd_buf;
-
- // always enqueue the first two command buffers
- // enqueue all of the command buffers if we don't need to abort
- if (cb_idx < 2 || ctx->abort_callback == NULL) {
- [cmd_buf enqueue];
-
- // update the pointer to the last queued command buffer
- // this is needed to implement synchronize()
- ctx->cmd_buf_last = cmd_buf;
- }
- }
-
- dispatch_apply(n_cb, ctx->d_queue, ctx->encode_async);
-
- // for debugging: block until graph is computed
- //[ctx->cmd_buf_last waitUntilCompleted];
-
- // enter here only when capturing in order to wait for all computation to finish
- // otherwise, we leave the graph to compute asynchronously
- if (!should_capture && ctx->capture_started) {
- // wait for completion and check status of each command buffer
- // needed to detect if the device ran out-of-memory for example (#1881)
- {
- id<MTLCommandBuffer> cmd_buf = ctx->cmd_bufs[n_cb].obj;
- [cmd_buf waitUntilCompleted];
-
- MTLCommandBufferStatus status = [cmd_buf status];
- if (status != MTLCommandBufferStatusCompleted) {
- GGML_LOG_INFO("%s: command buffer %d failed with status %lu\n", __func__, n_cb, status);
- if (status == MTLCommandBufferStatusError) {
- GGML_LOG_INFO("error: %s\n", [[cmd_buf error].localizedDescription UTF8String]);
- }
-
- return GGML_STATUS_FAILED;
- }
- }
-
- for (int i = 0; i < n_cb; ++i) {
- id<MTLCommandBuffer> cmd_buf = ctx->cmd_bufs[i].obj;
- [cmd_buf waitUntilCompleted];
-
- MTLCommandBufferStatus status = [cmd_buf status];
- if (status != MTLCommandBufferStatusCompleted) {
- GGML_LOG_INFO("%s: command buffer %d failed with status %lu\n", __func__, i, status);
- if (status == MTLCommandBufferStatusError) {
- GGML_LOG_INFO("error: %s\n", [[cmd_buf error].localizedDescription UTF8String]);
- }
-
- return GGML_STATUS_FAILED;
- }
-
- id<MTLCommandBuffer> next_buffer = (i + 1 < n_cb ? ctx->cmd_bufs[i + 1].obj : nil);
- if (!next_buffer) {
- continue;
- }
-
- const bool next_queued = ([next_buffer status] != MTLCommandBufferStatusNotEnqueued);
- if (next_queued) {
- continue;
- }
-
- if (ctx->abort_callback && ctx->abort_callback(ctx->abort_callback_data)) {
- GGML_LOG_INFO("%s: command buffer %d aborted", __func__, i);
- return GGML_STATUS_ABORTED;
- }
-
- [next_buffer commit];
- }
-
- [ctx->capture_scope endScope];
- [[MTLCaptureManager sharedCaptureManager] stopCapture];
- }
- }
-
- return GGML_STATUS_SUCCESS;
-}
-
-////////////////////////////////////////////////////////////////////////////////
-// backend interface
-////////////////////////////////////////////////////////////////////////////////
-
-// shared buffer
-
-static void ggml_backend_metal_buffer_shared_free_buffer(ggml_backend_buffer_t buffer) {
- struct ggml_backend_metal_buffer_context * ctx = (struct ggml_backend_metal_buffer_context *)buffer->context;
-
- for (int i = 0; i < ctx->n_buffers; i++) {
- [ctx->buffers[i].metal release];
- }
-
- ggml_backend_metal_buffer_rset_free(ctx);
-
- GGML_ASSERT(ctx->is_shared);
-
- {
-#if TARGET_OS_OSX
- vm_deallocate((vm_map_t)mach_task_self(), (vm_address_t)ctx->all_data, ctx->all_size);
-#else
- free(ctx->all_data);
-#endif
- }
-
- free(ctx);
-}
-
-static void * ggml_backend_metal_buffer_shared_get_base(ggml_backend_buffer_t buffer) {
- struct ggml_backend_metal_buffer_context * ctx = (struct ggml_backend_metal_buffer_context *)buffer->context;
-
- return ctx->all_data;
-}
-
-static void ggml_backend_metal_buffer_shared_memset_tensor(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor, uint8_t value, size_t offset, size_t size) {
- struct ggml_backend_metal_buffer_context * ctx = (struct ggml_backend_metal_buffer_context *)buffer->context;
-
- GGML_ASSERT(ctx->is_shared);
-
- memset((char *)tensor->data + offset, value, size);
-}
-
-static void ggml_backend_metal_buffer_shared_set_tensor(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor, const void * data, size_t offset, size_t size) {
- struct ggml_backend_metal_buffer_context * ctx = (struct ggml_backend_metal_buffer_context *)buffer->context;
-
- GGML_ASSERT(ctx->is_shared);
-
- memcpy((char *)tensor->data + offset, data, size);
-}
-
-static void ggml_backend_metal_buffer_shared_get_tensor(ggml_backend_buffer_t buffer, const struct ggml_tensor * tensor, void * data, size_t offset, size_t size) {
- struct ggml_backend_metal_buffer_context * ctx = (struct ggml_backend_metal_buffer_context *)buffer->context;
-
- GGML_ASSERT(ctx->is_shared);
-
- memcpy(data, (const char *)tensor->data + offset, size);
-}
-
-static bool ggml_backend_metal_buffer_shared_cpy_tensor(ggml_backend_buffer_t buffer, const struct ggml_tensor * src, struct ggml_tensor * dst) {
- GGML_UNUSED(buffer);
- GGML_UNUSED(src);
- GGML_UNUSED(dst);
-
- return false;
-}
-
-static void ggml_backend_metal_buffer_shared_clear(ggml_backend_buffer_t buffer, uint8_t value) {
- struct ggml_backend_metal_buffer_context * ctx = (struct ggml_backend_metal_buffer_context *)buffer->context;
-
- GGML_ASSERT(ctx->is_shared);
-
- memset(ctx->all_data, value, ctx->all_size);
-}
-
-static struct ggml_backend_buffer_i ggml_backend_metal_buffer_shared_i = {
- /* .free_buffer = */ ggml_backend_metal_buffer_shared_free_buffer,
- /* .get_base = */ ggml_backend_metal_buffer_shared_get_base,
- /* .init_tensor = */ NULL,
- /* .memset_tensor = */ ggml_backend_metal_buffer_shared_memset_tensor,
- /* .set_tensor = */ ggml_backend_metal_buffer_shared_set_tensor,
- /* .get_tensor = */ ggml_backend_metal_buffer_shared_get_tensor,
- /* .cpy_tensor = */ ggml_backend_metal_buffer_shared_cpy_tensor,
- /* .clear = */ ggml_backend_metal_buffer_shared_clear,
- /* .reset = */ NULL,
-};
-
-// private buffer
-
-static void ggml_backend_metal_buffer_private_free_buffer(ggml_backend_buffer_t buffer) {
- struct ggml_backend_metal_buffer_context * ctx = (struct ggml_backend_metal_buffer_context *)buffer->context;
-
- for (int i = 0; i < ctx->n_buffers; i++) {
- [ctx->buffers[i].metal release];
- }
-
- ggml_backend_metal_buffer_rset_free(ctx);
-
- GGML_ASSERT(!ctx->is_shared);
-
- free(ctx);
-}
-
-static void * ggml_backend_metal_buffer_private_get_base(ggml_backend_buffer_t buffer) {
- struct ggml_backend_metal_buffer_context * ctx = (struct ggml_backend_metal_buffer_context *)buffer->context;
-
- return ctx->all_data;
-}
-
-static void ggml_backend_metal_buffer_private_memset_tensor(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor, uint8_t value, size_t offset, size_t size) {
- struct ggml_backend_metal_buffer_context * ctx = (struct ggml_backend_metal_buffer_context *)buffer->context;
-
- GGML_ASSERT(!ctx->is_shared);
-
- @autoreleasepool {
- // dst
- size_t buf_dst_offset = 0;
- id<MTLBuffer> buf_dst = ggml_metal_get_buffer(tensor, &buf_dst_offset);
-
- buf_dst_offset += offset;
-
- id<MTLCommandQueue> queue = ctx->queue;
- id<MTLCommandBuffer> cmd_buf = [queue commandBufferWithUnretainedReferences];
-
- {
- id<MTLBlitCommandEncoder> encoder = [cmd_buf blitCommandEncoder];
-
- [encoder fillBuffer:buf_dst
- range:NSMakeRange(buf_dst_offset, buf_dst_offset + size)
- value:value];
-
- [encoder endEncoding];
- }
-
- [cmd_buf commit];
- [cmd_buf waitUntilCompleted];
- }
-}
-
-static void ggml_backend_metal_buffer_private_set_tensor(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor, const void * data, size_t offset, size_t size) {
- struct ggml_backend_metal_buffer_context * ctx = (struct ggml_backend_metal_buffer_context *)buffer->context;
-
- GGML_ASSERT(!ctx->is_shared);
-
- @autoreleasepool {
- // src
- void * data_ptr = (void *)(uintptr_t) data; // "const cast" the src data
- id<MTLBuffer> buf_src = [ctx->device newBufferWithBytesNoCopy:data_ptr
- length:size
- options:MTLResourceStorageModeShared
- deallocator:nil];
-
- // dst
- size_t buf_dst_offset = 0;
- id<MTLBuffer> buf_dst = ggml_metal_get_buffer(tensor, &buf_dst_offset);
-
- buf_dst_offset += offset;
-
- // note: for experimentation purposes, here we use a semaphore to wait for the copy to complete
- // this is alternative to waitUntilCompleted, which should be faster, but don't seem to make much difference
- dispatch_semaphore_t completion_semaphore = dispatch_semaphore_create(0);
-
- id<MTLCommandQueue> queue = ctx->queue;
- id<MTLCommandBuffer> cmd_buf = [queue commandBufferWithUnretainedReferences];
-
- {
- id<MTLBlitCommandEncoder> encoder = [cmd_buf blitCommandEncoder];
-
- [encoder copyFromBuffer:buf_src
- sourceOffset:0
- toBuffer:buf_dst
- destinationOffset:buf_dst_offset
- size:size];
-
- [encoder endEncoding];
- }
-
- [cmd_buf addCompletedHandler:^(id<MTLCommandBuffer> cb) {
- // TODO: can check for errors here
- GGML_UNUSED(cb);
-
- dispatch_semaphore_signal(completion_semaphore);
- }];
-
- [cmd_buf commit];
-
- dispatch_semaphore_wait(completion_semaphore, DISPATCH_TIME_FOREVER);
- //[cmd_buf waitUntilCompleted];
- }
-}
-
-static void ggml_backend_metal_buffer_private_get_tensor(ggml_backend_buffer_t buffer, const struct ggml_tensor * tensor, void * data, size_t offset, size_t size) {
- struct ggml_backend_metal_buffer_context * ctx = (struct ggml_backend_metal_buffer_context *)buffer->context;
-
- GGML_ASSERT(!ctx->is_shared);
-
- @autoreleasepool {
- // src
- size_t buf_src_offset = 0;
- id<MTLBuffer> buf_src = ggml_metal_get_buffer(tensor, &buf_src_offset);
-
- buf_src_offset += offset;
-
- // dst
- id<MTLBuffer> buf_dst = [ctx->device newBufferWithBytesNoCopy:data
- length:size
- options:MTLResourceStorageModeShared
- deallocator:nil];
-
- id<MTLCommandQueue> queue = ctx->queue;
- id<MTLCommandBuffer> cmd_buf = [queue commandBufferWithUnretainedReferences];
-
- {
- id<MTLBlitCommandEncoder> encoder = [cmd_buf blitCommandEncoder];
-
- [encoder copyFromBuffer:buf_src
- sourceOffset:buf_src_offset
- toBuffer:buf_dst
- destinationOffset:0
- size:size];
-
- [encoder endEncoding];
- }
-
- [cmd_buf commit];
- [cmd_buf waitUntilCompleted];
- }
-}
-
-static bool ggml_backend_metal_buffer_private_cpy_tensor(ggml_backend_buffer_t buffer, const struct ggml_tensor * src, struct ggml_tensor * dst) {
- GGML_UNUSED(buffer);
- GGML_UNUSED(src);
- GGML_UNUSED(dst);
-
- return false;
-}
-
-static void ggml_backend_metal_buffer_private_clear(ggml_backend_buffer_t buffer, uint8_t value) {
- struct ggml_backend_metal_buffer_context * ctx = (struct ggml_backend_metal_buffer_context *)buffer->context;
-
- GGML_ASSERT(!ctx->is_shared);
-
- @autoreleasepool {
- id<MTLCommandQueue> queue = ctx->queue;
- id<MTLCommandBuffer> cmd_buf = [queue commandBufferWithUnretainedReferences];
-
- {
- id<MTLBlitCommandEncoder> encoder = [cmd_buf blitCommandEncoder];
-
- [encoder fillBuffer:ctx->buffers[0].metal
- range:NSMakeRange(0, ctx->buffers[0].size)
- value:value];
-
- [encoder endEncoding];
- }
-
- [cmd_buf commit];
- [cmd_buf waitUntilCompleted];
- }
-}
-
-static struct ggml_backend_buffer_i ggml_backend_metal_buffer_private_i = {
- /* .free_buffer = */ ggml_backend_metal_buffer_private_free_buffer,
- /* .get_base = */ ggml_backend_metal_buffer_private_get_base,
- /* .init_tensor = */ NULL,
- /* .memset_tensor = */ ggml_backend_metal_buffer_private_memset_tensor,
- /* .set_tensor = */ ggml_backend_metal_buffer_private_set_tensor,
- /* .get_tensor = */ ggml_backend_metal_buffer_private_get_tensor,
- /* .cpy_tensor = */ ggml_backend_metal_buffer_private_cpy_tensor,
- /* .clear = */ ggml_backend_metal_buffer_private_clear,
- /* .reset = */ NULL,
-};
-
-//
-// buffer types
-//
-
-static void ggml_backend_metal_log_allocated_size(id<MTLDevice> device, size_t size_aligned) {
-#ifndef GGML_METAL_NDEBUG
-#if TARGET_OS_OSX || (TARGET_OS_IOS && __clang_major__ >= 15)
- if (@available(macOS 10.12, iOS 16.0, *)) {
- GGML_LOG_DEBUG("%s: allocated buffer, size = %8.2f MiB, (%8.2f / %8.2f)\n",
- __func__,
- size_aligned / 1024.0 / 1024.0,
- device.currentAllocatedSize / 1024.0 / 1024.0,
- device.recommendedMaxWorkingSetSize / 1024.0 / 1024.0);
-
- if (device.currentAllocatedSize > device.recommendedMaxWorkingSetSize) {
- GGML_LOG_WARN("%s: warning: current allocated size is greater than the recommended max working set size\n", __func__);
- }
- } else {
- GGML_LOG_INFO("%s: allocated buffer, size = %8.2f MiB, (%8.2f)\n",
- __func__,
- size_aligned / 1024.0 / 1024.0,
- device.currentAllocatedSize / 1024.0 / 1024.0);
- }
-#endif
-#endif
- GGML_UNUSED(device);
- GGML_UNUSED(size_aligned);
-}
-
-// common method for allocating shread or private Metal buffers
-static ggml_backend_buffer_t ggml_backend_metal_buffer_type_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size, bool shared) {
- struct ggml_backend_metal_buffer_context * ctx = calloc(1, sizeof(struct ggml_backend_metal_buffer_context));
-
- const size_t size_page = sysconf(_SC_PAGESIZE);
-
- size_t size_aligned = size;
- if ((size_aligned % size_page) != 0) {
- size_aligned += (size_page - (size_aligned % size_page));
- }
-
- struct ggml_backend_metal_device_context * ctx_dev = (struct ggml_backend_metal_device_context *)buft->device->context;
-
- GGML_ASSERT(ctx_dev->mtl_device != nil);
-
- id<MTLDevice> device = ctx_dev->mtl_device;
-
- // allocate shared buffer if the device supports it and it is required by the buffer type
- if (ctx_dev->use_shared_buffers && shared) {
- ctx->all_data = ggml_metal_host_malloc(size_aligned);
- ctx->is_shared = true;
- } else {
- // dummy, non-NULL value - we'll populate this after creating the Metal buffer below
- ctx->all_data = (void *) 0x000000400ULL;
- ctx->is_shared = false;
- }
- ctx->all_size = size_aligned;
-
- ctx->device = device;
- ctx->queue = ctx_dev->mtl_queue;
-
- ctx->n_buffers = 1;
-
- if (ctx->all_data != NULL) {
- ctx->buffers[0].size = size;
- ctx->buffers[0].metal = nil;
-
- if (size_aligned > 0) {
- if (ctx_dev->use_shared_buffers) {
- ctx->buffers[0].metal = [device newBufferWithBytesNoCopy:ctx->all_data
- length:size_aligned
- options:MTLResourceStorageModeShared
- deallocator:nil];
- } else {
- ctx->buffers[0].metal = [device newBufferWithLength:size_aligned options:MTLResourceStorageModePrivate];
-
- ctx->all_data = (void *) (ctx->buffers[0].metal.gpuAddress);
- }
- }
-
- ctx->buffers[0].data = ctx->all_data;
- }
-
- if (size_aligned > 0 && (ctx->all_data == NULL || ctx->buffers[0].metal == nil)) {
- GGML_LOG_ERROR("%s: error: failed to allocate buffer, size = %8.2f MiB\n", __func__, size_aligned / 1024.0 / 1024.0);
- free(ctx);
- return NULL;
- }
-
- if (!ggml_backend_metal_buffer_rset_init(ctx, ctx_dev, device)) {
- GGML_LOG_ERROR("%s: error: failed to initialize residency set\n", __func__);
- free(ctx);
- return NULL;
- }
-
- //ggml_backend_metal_log_allocated_size(device, size_aligned);
-
- struct ggml_backend_buffer_i buf_i = ctx->is_shared ? ggml_backend_metal_buffer_shared_i : ggml_backend_metal_buffer_private_i;
-
- return ggml_backend_buffer_init(buft, buf_i, ctx, size);
-}
-
-static size_t ggml_backend_metal_buffer_type_get_alloc_size(ggml_backend_buffer_type_t buft, const struct ggml_tensor * tensor) {
- size_t res = ggml_nbytes(tensor);
-
- // some operations require additional memory for fleeting data:
- switch (tensor->op) {
- case GGML_OP_MUL_MAT_ID:
- {
- res += ggml_metal_mul_mat_id_extra_tpe(tensor);
- res += ggml_metal_mul_mat_id_extra_ids(tensor);
- } break;
- case GGML_OP_FLASH_ATTN_EXT:
- {
- if (ggml_metal_flash_attn_ext_use_vec(tensor)) {
- res += ggml_metal_flash_attn_ext_extra_tmp(tensor);
- }
- } break;
- default:
- break;
- }
-
- return res;
-
- GGML_UNUSED(buft);
-}
-
-// default (shared) buffer type
-
-static const char * ggml_backend_metal_buffer_type_shared_get_name(ggml_backend_buffer_type_t buft) {
- return "Metal";
-
- GGML_UNUSED(buft);
-}
-
-static ggml_backend_buffer_t ggml_backend_metal_buffer_type_shared_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size) {
- return ggml_backend_metal_buffer_type_alloc_buffer(buft, size, true);
-}
-
-static size_t ggml_backend_metal_buffer_type_shared_get_alignment(ggml_backend_buffer_type_t buft) {
- return 32;
-
- GGML_UNUSED(buft);
-}
-
-static size_t ggml_backend_metal_buffer_type_shared_get_max_size(ggml_backend_buffer_type_t buft) {
- const size_t max_size = ((struct ggml_backend_metal_device_context *)buft->device->context)->max_size;
-
- return max_size;
-}
-
-static size_t ggml_backend_metal_buffer_type_shared_get_alloc_size(ggml_backend_buffer_type_t buft, const struct ggml_tensor * tensor) {
- return ggml_backend_metal_buffer_type_get_alloc_size(buft, tensor);
-}
-
-static bool ggml_backend_metal_buffer_type_shared_is_host(ggml_backend_buffer_type_t buft) {
- return false;
-
- GGML_UNUSED(buft);
-}
-
-static ggml_backend_buffer_type_t ggml_backend_metal_buffer_type_shared(void) {
- static struct ggml_backend_buffer_type ggml_backend_buffer_type_metal = {
- /* .iface = */ {
- /* .get_name = */ ggml_backend_metal_buffer_type_shared_get_name,
- /* .alloc_buffer = */ ggml_backend_metal_buffer_type_shared_alloc_buffer,
- /* .get_alignment = */ ggml_backend_metal_buffer_type_shared_get_alignment,
- /* .get_max_size = */ ggml_backend_metal_buffer_type_shared_get_max_size,
- /* .get_alloc_size = */ ggml_backend_metal_buffer_type_shared_get_alloc_size,
- /* .is_host = */ ggml_backend_metal_buffer_type_shared_is_host,
- },
- /* .device = */ &g_ggml_backend_metal_device,
- /* .context = */ NULL,
- };
-
- return &ggml_backend_buffer_type_metal;
-}
-
-// default (private) buffer type
-
-static const char * ggml_backend_metal_buffer_type_private_get_name(ggml_backend_buffer_type_t buft) {
- return "Metal_Private";
-
- GGML_UNUSED(buft);
-}
-
-static ggml_backend_buffer_t ggml_backend_metal_buffer_type_private_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size) {
- return ggml_backend_metal_buffer_type_alloc_buffer(buft, size, false);
-}
-
-static size_t ggml_backend_metal_buffer_type_private_get_alignment(ggml_backend_buffer_type_t buft) {
- return 32;
-
- GGML_UNUSED(buft);
-}
-
-static size_t ggml_backend_metal_buffer_type_private_get_max_size(ggml_backend_buffer_type_t buft) {
- const size_t max_size = ((struct ggml_backend_metal_device_context *)buft->device->context)->max_size;
-
- return max_size;
-}
-
-static size_t ggml_backend_metal_buffer_type_private_get_alloc_size(ggml_backend_buffer_type_t buft, const struct ggml_tensor * tensor) {
- return ggml_backend_metal_buffer_type_get_alloc_size(buft, tensor);
-}
-
-static bool ggml_backend_metal_buffer_type_private_is_host(ggml_backend_buffer_type_t buft) {
- return false;
-
- GGML_UNUSED(buft);
-}
-
-static ggml_backend_buffer_type_t ggml_backend_metal_buffer_type_private(void) {
- static struct ggml_backend_buffer_type ggml_backend_buffer_type_metal = {
- /* .iface = */ {
- /* .get_name = */ ggml_backend_metal_buffer_type_private_get_name,
- /* .alloc_buffer = */ ggml_backend_metal_buffer_type_private_alloc_buffer,
- /* .get_alignment = */ ggml_backend_metal_buffer_type_private_get_alignment,
- /* .get_max_size = */ ggml_backend_metal_buffer_type_private_get_max_size,
- /* .get_alloc_size = */ ggml_backend_metal_buffer_type_private_get_alloc_size,
- /* .is_host = */ ggml_backend_metal_buffer_type_private_is_host,
- },
- /* .device = */ &g_ggml_backend_metal_device,
- /* .context = */ NULL,
- };
-
- return &ggml_backend_buffer_type_metal;
-}
-
-// mapped buffer type
-
-static const char * ggml_backend_metal_buffer_type_mapped_get_name(ggml_backend_buffer_type_t buft) {
- return "Metal_Mapped";
-
- GGML_UNUSED(buft);
-}
-
-static ggml_backend_buffer_t ggml_backend_metal_buffer_type_mapped_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size) {
- // for mapped buffers, prefer shared memory
- return ggml_backend_metal_buffer_type_alloc_buffer(buft, size, true);
-}
-
-static size_t ggml_backend_metal_buffer_type_mapped_get_alignment(ggml_backend_buffer_type_t buft) {
- return 32;
-
- GGML_UNUSED(buft);
-}
-
-static size_t ggml_backend_metal_buffer_type_mapped_get_max_size(ggml_backend_buffer_type_t buft) {
- const size_t max_size = ((struct ggml_backend_metal_device_context *)buft->device->context)->max_size;
-
- return max_size;
-}
-
-static size_t ggml_backend_metal_buffer_type_mapped_get_alloc_size(ggml_backend_buffer_type_t buft, const struct ggml_tensor * tensor) {
- return ggml_backend_metal_buffer_type_get_alloc_size(buft, tensor);
-}
-
-static bool ggml_backend_metal_buffer_type_mapped_is_host(ggml_backend_buffer_type_t buft) {
- return false;
-
- GGML_UNUSED(buft);
-}
-
-static ggml_backend_buffer_type_t ggml_backend_metal_buffer_type_mapped(void) {
- // note: not obvious, but this buffer type still needs to implement .alloc_buffer:
- // https://github.com/ggml-org/llama.cpp/pull/15832#discussion_r2333177099
- static struct ggml_backend_buffer_type ggml_backend_buffer_type_mapped_metal = {
- /* .iface = */ {
- /* .get_name = */ ggml_backend_metal_buffer_type_mapped_get_name,
- /* .alloc_buffer = */ ggml_backend_metal_buffer_type_mapped_alloc_buffer,
- /* .get_alignment = */ ggml_backend_metal_buffer_type_mapped_get_alignment,
- /* .get_max_size = */ ggml_backend_metal_buffer_type_mapped_get_max_size,
- /* .get_alloc_size = */ ggml_backend_metal_buffer_type_mapped_get_alloc_size,
- /* .is_host = */ ggml_backend_metal_buffer_type_mapped_is_host,
- },
- /* .device = */ &g_ggml_backend_metal_device,
- /* .context = */ NULL,
- };
-
- return &ggml_backend_buffer_type_mapped_metal;
-}
-
-// backend
-
-static const char * ggml_backend_metal_name(ggml_backend_t backend) {
- return "Metal";
-
- GGML_UNUSED(backend);
-}
-
-static void ggml_backend_metal_free(ggml_backend_t backend) {
- struct ggml_backend_metal_context * ctx = backend->context;
-
- ggml_metal_free(ctx);
-
- free(backend);
-}
-
-static void ggml_backend_metal_synchronize(ggml_backend_t backend) {
- struct ggml_backend_metal_context * ctx = backend->context;
-
- // wait for any backend operations to finish
- if (ctx->cmd_buf_last) {
- [ctx->cmd_buf_last waitUntilCompleted];
- ctx->cmd_buf_last = nil;
- }
-
- // release any completed command buffers
- if (ctx->cmd_bufs_ext.count > 0) {
- for (size_t i = 0; i < ctx->cmd_bufs_ext.count; ++i) {
- id<MTLCommandBuffer> cmd_buf = ctx->cmd_bufs_ext[i];
-
- MTLCommandBufferStatus status = [cmd_buf status];
- if (status != MTLCommandBufferStatusCompleted) {
- GGML_LOG_ERROR("%s: error: command buffer %d failed with status %d\n", __func__, (int) i, (int) status);
- if (status == MTLCommandBufferStatusError) {
- GGML_LOG_ERROR("error: %s\n", [[cmd_buf error].localizedDescription UTF8String]);
- }
- GGML_ABORT("fatal error");
- }
-
- [cmd_buf release];
- }
-
- [ctx->cmd_bufs_ext removeAllObjects];
- }
-}
-
-static void ggml_backend_metal_set_tensor_async(ggml_backend_t backend, struct ggml_tensor * tensor, const void * data, size_t offset, size_t size) {
- struct ggml_backend_metal_context * ctx = backend->context;
- struct ggml_backend_metal_device_context * ctx_dev = backend->device->context;
-
- @autoreleasepool {
- id<MTLDevice> device = ctx_dev->mtl_device;
-
- // wrap the source data into a Metal buffer
- id<MTLBuffer> buf_src = [device newBufferWithBytes:data
- length:size
- options:MTLResourceStorageModeShared];
-
- size_t buf_dst_offset = 0;
- id<MTLBuffer> buf_dst = ggml_metal_get_buffer(tensor, &buf_dst_offset);
-
- if (buf_dst == nil) {
- GGML_ABORT("%s: failed to find buffer for tensor '%s'\n", __func__, tensor->name);
- }
-
- buf_dst_offset += offset;
-
- // queue the copy operation into the queue of the Metal context
- // this will be queued at the end, after any currently ongoing GPU operations
- id<MTLCommandBuffer> cmd_buf = [ctx->queue commandBufferWithUnretainedReferences];
- id<MTLBlitCommandEncoder> encoder = [cmd_buf blitCommandEncoder];
-
- [encoder copyFromBuffer:buf_src
- sourceOffset:0
- toBuffer:buf_dst
- destinationOffset:buf_dst_offset
- size:size];
-
- [encoder endEncoding];
- [cmd_buf commit];
-
- // do not wait here for completion
- //[cmd_buf waitUntilCompleted];
-
- // instead, remember a reference to the command buffer and wait for it later if needed
- [ctx->cmd_bufs_ext addObject:cmd_buf];
- ctx->cmd_buf_last = cmd_buf;
-
- [cmd_buf retain];
- }
-}
-
-static void ggml_backend_metal_get_tensor_async(ggml_backend_t backend, const struct ggml_tensor * tensor, void * data, size_t offset, size_t size) {
- struct ggml_backend_metal_context * ctx = backend->context;
- struct ggml_backend_metal_device_context * ctx_dev = backend->device->context;
-
- @autoreleasepool {
- id<MTLDevice> device = ctx_dev->mtl_device;
-
- id<MTLBuffer> buf_dst = [device newBufferWithBytesNoCopy:data
- length:size
- options:MTLResourceStorageModeShared
- deallocator:nil];
-
- size_t buf_src_offset = 0;
- id<MTLBuffer> buf_src = ggml_metal_get_buffer(tensor, &buf_src_offset);
-
- if (buf_src == nil) {
- GGML_ABORT("%s: failed to find buffer for tensor '%s'\n", __func__, tensor->name);
- }
-
- buf_src_offset += offset;
-
- // queue the copy operation into the queue of the Metal context
- // this will be queued at the end, after any currently ongoing GPU operations
- id<MTLCommandBuffer> cmd_buf = [ctx->queue commandBufferWithUnretainedReferences];
- id<MTLBlitCommandEncoder> encoder = [cmd_buf blitCommandEncoder];
-
- [encoder copyFromBuffer:buf_src
- sourceOffset:buf_src_offset
- toBuffer:buf_dst
- destinationOffset:0
- size:size];
-
- [encoder endEncoding];
- [cmd_buf commit];
-
- // do not wait here for completion
- //[cmd_buf waitUntilCompleted];
-
- // instead, remember a reference to the command buffer and wait for it later if needed
- [ctx->cmd_bufs_ext addObject:cmd_buf];
- ctx->cmd_buf_last = cmd_buf;
-
- [cmd_buf retain];
- }
-}
-
-static bool ggml_backend_metal_cpy_tensor_async(ggml_backend_t backend_src, ggml_backend_t backend_dst, const struct ggml_tensor * src, struct ggml_tensor * dst) {
- return false;
-
- GGML_UNUSED(backend_src);
- GGML_UNUSED(backend_dst);
- GGML_UNUSED(src);
- GGML_UNUSED(dst);
-}
-
-static enum ggml_status ggml_backend_metal_graph_compute(ggml_backend_t backend, struct ggml_cgraph * cgraph) {
- return ggml_metal_graph_compute(backend, cgraph);
-}
-
-static void ggml_backend_metal_graph_optimize(ggml_backend_t backend, struct ggml_cgraph * cgraph) {
- struct ggml_backend_metal_device_context * ctx_dev = backend->device->context;
-
- //const int64_t t_start = ggml_time_us();
-
- if (ctx_dev->use_graph_optimize) {
- ggml_metal_graph_optimize(cgraph);
- }
-
- //printf("%s: graph optimize took %.3f ms\n", __func__, (ggml_time_us() - t_start) / 1000.0);
-}
-
-static void ggml_backend_metal_set_n_cb(ggml_backend_t backend, int n_cb) {
- GGML_ASSERT(ggml_backend_is_metal(backend));
-
- struct ggml_backend_metal_context * ctx = (struct ggml_backend_metal_context *)backend->context;
-
- if (ctx->n_cb != n_cb) {
- ctx->n_cb = MIN(n_cb, GGML_METAL_MAX_COMMAND_BUFFERS);
-
- if (ctx->n_cb > 2) {
- GGML_LOG_WARN("%s: n_cb = %d, using n_cb > 2 is not recommended and can degrade the performance in some cases\n", __func__, n_cb);
- }
- }
-
- if (ctx->encode_async) {
- Block_release(ctx->encode_async);
- }
-
- ctx->encode_async = Block_copy(^(size_t iter) {
- const int cb_idx = iter;
- const int n_cb_l = ctx->n_cb;
-
- const int n_nodes_0 = ctx->n_nodes_0;
- const int n_nodes_1 = ctx->n_nodes_1;
-
- const int n_nodes_per_cb = ctx->n_nodes_per_cb;
-
- id<MTLCommandBuffer> cmd_buf = ctx->cmd_bufs[cb_idx].obj;
- struct ggml_mem_ranges * mem_ranges = ctx->cmd_bufs[cb_idx].mem_ranges;
-
- if (mem_ranges) {
- ggml_mem_ranges_reset(mem_ranges);
- }
-
- id<MTLComputeCommandEncoder> encoder;
-
- struct ggml_backend_metal_device_context * ctx_dev = backend->device->context;
-
- if (ctx_dev->use_concurrency) {
- encoder = [cmd_buf computeCommandEncoderWithDispatchType: MTLDispatchTypeConcurrent];
- } else {
- encoder = [cmd_buf computeCommandEncoder];
- }
-
- int node_start = 0;
- int node_end = n_nodes_0;
-
- if (cb_idx < n_cb_l) {
- node_start = n_nodes_0 + ( (cb_idx + 0) * n_nodes_per_cb);
- node_end = n_nodes_0 + (MIN((cb_idx == n_cb_l - 1) ? n_nodes_1 : (cb_idx + 1) * n_nodes_per_cb, n_nodes_1));
- }
-
- const bool should_capture = ctx->capture_next_compute;
-
- struct ggml_metal_encode_context ctx_enc = {
- /*.backend =*/ backend,
- /*.encoder =*/ encoder,
- /*.mem_ranges =*/ mem_ranges,
- };
-
- for (int idx = node_start; idx < node_end;) {
- if (should_capture) {
- [encoder pushDebugGroup:[NSString stringWithCString:ggml_op_desc(ggml_graph_node(ctx->gf, idx)) encoding:NSUTF8StringEncoding]];
- }
-
- const int res = ggml_metal_encode_node(&ctx_enc, idx, node_end);
- if (idx + res > node_end) {
- GGML_ABORT("fusion error: nodes spanning multiple encoders have been fused. this indicates a bug in the fusion logic %s",
- "https://github.com/ggml-org/llama.cpp/pull/14849");
- }
-
- if (should_capture) {
- [encoder popDebugGroup];
- }
-
- if (res == 0) {
- break;
- }
-
- idx += res;
- }
-
- [encoder endEncoding];
-
- if (cb_idx < 2 || ctx->abort_callback == NULL) {
- [cmd_buf commit];
- }
- });
-}
-
-static struct ggml_backend_i ggml_backend_metal_i = {
- /* .get_name = */ ggml_backend_metal_name,
- /* .free = */ ggml_backend_metal_free,
- /* .set_tensor_async = */ ggml_backend_metal_set_tensor_async,
- /* .get_tensor_async = */ ggml_backend_metal_get_tensor_async,
- /* .cpy_tensor_async = */ ggml_backend_metal_cpy_tensor_async, // only needed for multi-GPU setups
- /* .synchronize = */ ggml_backend_metal_synchronize,
- /* .graph_plan_create = */ NULL,
- /* .graph_plan_free = */ NULL,
- /* .graph_plan_update = */ NULL,
- /* .graph_plan_compute = */ NULL,
- /* .graph_compute = */ ggml_backend_metal_graph_compute,
-
- // the events API is needed only for multi-GPU setups, so likely no need to implement it for Metal
- // in any case, these docs seem relevant if we ever decide to implement it:
- // https://developer.apple.com/documentation/metal/mtlcommandbuffer#Synchronizing-Passes-with-Events
- /* .event_record = */ NULL,
- /* .event_wait = */ NULL,
- /* .optimize_graph = */ ggml_backend_metal_graph_optimize,
-};
-
-static ggml_guid_t ggml_backend_metal_guid(void) {
- static ggml_guid guid = { 0x81, 0xa1, 0x8b, 0x1e, 0x71, 0xec, 0x79, 0xed, 0x2b, 0x85, 0xdc, 0x8a, 0x61, 0x98, 0x30, 0xe6 };
- return &guid;
-}
-
-// TODO: remove in the future
-ggml_backend_t ggml_backend_metal_init(void) {
- ggml_backend_dev_t dev = ggml_backend_reg_dev_get(ggml_backend_metal_reg(), 0);
-
- struct ggml_backend_metal_context * ctx = ggml_metal_init(dev);
- if (ctx == NULL) {
- GGML_LOG_ERROR("%s: error: failed to allocate context\n", __func__);
- return NULL;
- }
-
- ggml_backend_t backend = malloc(sizeof(struct ggml_backend));
-
- *backend = (struct ggml_backend) {
- /* .guid = */ ggml_backend_metal_guid(),
- /* .interface = */ ggml_backend_metal_i,
- /* .device = */ dev,
- /* .context = */ ctx,
- };
-
- ggml_backend_metal_set_n_cb(backend, 1);
-
- return backend;
-}
-
-bool ggml_backend_is_metal(ggml_backend_t backend) {
- return backend != NULL && ggml_guid_matches(backend->guid, ggml_backend_metal_guid());
-}
-
-void ggml_backend_metal_set_abort_callback(ggml_backend_t backend, ggml_abort_callback abort_callback, void * user_data) {
- GGML_ASSERT(ggml_backend_is_metal(backend));
-
- struct ggml_backend_metal_context * ctx = (struct ggml_backend_metal_context *)backend->context;
-
- ctx->abort_callback = abort_callback;
- ctx->abort_callback_data = user_data;
-}
-
-bool ggml_backend_metal_supports_family(ggml_backend_t backend, int family) {
- GGML_ASSERT(ggml_backend_is_metal(backend));
-
- struct ggml_backend_metal_device_context * ctx_dev = backend->device->context;
-
- GGML_ASSERT(ctx_dev->mtl_device != nil);
-
- return [ctx_dev->mtl_device supportsFamily:(MTLGPUFamilyApple1 + family - 1)];
-}
-
-void ggml_backend_metal_capture_next_compute(ggml_backend_t backend) {
- GGML_ASSERT(ggml_backend_is_metal(backend));
-
- struct ggml_backend_metal_context * ctx = (struct ggml_backend_metal_context *)backend->context;
- ctx->capture_next_compute = true;
-}
-
-// backend device
-
-static const char * ggml_backend_metal_device_get_name(ggml_backend_dev_t dev) {
- return "Metal";
-
- GGML_UNUSED(dev);
-}
-
-static const char * ggml_backend_metal_device_get_description(ggml_backend_dev_t dev) {
- struct ggml_backend_metal_device_context * ctx_dev = (struct ggml_backend_metal_device_context *)dev->context;
-
- return ctx_dev->name;
-}
-
-static void ggml_backend_metal_device_get_memory(ggml_backend_dev_t dev, size_t * free, size_t * total) {
- if (@available(macOS 10.12, iOS 16.0, *)) {
- struct ggml_backend_metal_device_context * ctx_dev = (struct ggml_backend_metal_device_context *)dev->context;
- id<MTLDevice> device = ctx_dev->mtl_device;
-
- *total = device.recommendedMaxWorkingSetSize;
- *free = *total - device.currentAllocatedSize;
- } else {
- *free = 1;
- *total = 1;
- }
-}
-
-static enum ggml_backend_dev_type ggml_backend_metal_device_get_type(ggml_backend_dev_t dev) {
- return GGML_BACKEND_DEVICE_TYPE_GPU;
-
- GGML_UNUSED(dev);
-}
-
-static void ggml_backend_metal_device_get_props(ggml_backend_dev_t dev, struct ggml_backend_dev_props * props) {
- props->name = ggml_backend_metal_device_get_name(dev);
- props->description = ggml_backend_metal_device_get_description(dev);
- props->type = ggml_backend_metal_device_get_type(dev);
- ggml_backend_metal_device_get_memory(dev, &props->memory_free, &props->memory_total);
- props->caps = (struct ggml_backend_dev_caps) {
- /* .async = */ true,
- /* .host_buffer = */ false,
- /* .buffer_from_host_ptr = */ true,
- /* .events = */ false,
- };
-}
-
-static ggml_backend_t ggml_backend_metal_device_init(ggml_backend_dev_t dev, const char * params) {
- struct ggml_backend_metal_context * ctx = ggml_metal_init(dev);
- if (ctx == NULL) {
- GGML_LOG_ERROR("%s: error: failed to allocate context\n", __func__);
- return NULL;
- }
-
- ggml_backend_t backend = malloc(sizeof(struct ggml_backend));
-
- *backend = (struct ggml_backend) {
- /* .guid = */ ggml_backend_metal_guid(),
- /* .interface = */ ggml_backend_metal_i,
- /* .device = */ dev,
- /* .context = */ ctx,
- };
-
- ggml_backend_metal_set_n_cb(backend, 1);
-
- return backend;
-
- GGML_UNUSED(params);
-}
-
-static ggml_backend_buffer_type_t ggml_backend_metal_device_get_buffer_type(ggml_backend_dev_t dev) {
- struct ggml_backend_metal_device_context * ctx_dev = dev->context;
-
- return ctx_dev->use_shared_buffers ? ggml_backend_metal_buffer_type_shared() : ggml_backend_metal_buffer_type_private();
-}
-
-static ggml_backend_buffer_t ggml_backend_metal_device_buffer_mapped(ggml_backend_dev_t dev, void * ptr, size_t size, size_t max_tensor_size) {
- struct ggml_backend_metal_buffer_context * ctx = calloc(1, sizeof(struct ggml_backend_metal_buffer_context));
-
- ctx->all_data = ptr;
- ctx->all_size = size;
-
- ctx->is_shared = true;
-
- ctx->n_buffers = 0;
-
- const size_t size_page = sysconf(_SC_PAGESIZE);
-
- // page-align the data ptr
- {
- const uintptr_t offs = (uintptr_t) ptr % size_page;
- ptr = (void *) ((char *) ptr - offs);
- size += offs;
- }
-
- size_t size_aligned = size;
- if ((size_aligned % size_page) != 0) {
- size_aligned += (size_page - (size_aligned % size_page));
- }
-
- struct ggml_backend_metal_device_context * ctx_dev = (struct ggml_backend_metal_device_context *)dev->context;
-
- GGML_ASSERT(ctx_dev->mtl_device != nil);
-
- id<MTLDevice> device = ctx_dev->mtl_device;
-
- ctx->device = device;
- ctx->queue = ctx_dev->mtl_queue;
-
- // the buffer fits into the max buffer size allowed by the device
- if (size_aligned <= device.maxBufferLength) {
- ctx->buffers[ctx->n_buffers].data = ptr;
- ctx->buffers[ctx->n_buffers].size = size;
- ctx->buffers[ctx->n_buffers].metal = nil;
-
- if (size_aligned > 0) {
- ctx->buffers[ctx->n_buffers].metal = [device newBufferWithBytesNoCopy:ptr length:size_aligned options:MTLResourceStorageModeShared deallocator:nil];
-
- if (ctx->buffers[ctx->n_buffers].metal == nil) {
- GGML_LOG_ERROR("%s: error: failed to allocate buffer, size = %8.2f MiB\n", __func__, size_aligned / 1024.0 / 1024.0);
- return false;
- }
- }
-
- ggml_backend_metal_log_allocated_size(device, size_aligned);
-
- ++ctx->n_buffers;
- } else {
- // this overlap between the views will guarantee that the tensor with the maximum size will fully fit into
- // one of the views
- const size_t size_ovlp = ((max_tensor_size + size_page - 1) / size_page + 1) * size_page; // round-up 2 pages just in case
- const size_t size_step = device.maxBufferLength - size_ovlp;
- const size_t size_view = device.maxBufferLength;
-
- for (size_t i = 0; i < size; i += size_step) {
- const size_t size_step_aligned = (i + size_view <= size) ? size_view : (size_aligned - i);
-
- ctx->buffers[ctx->n_buffers].data = (void *) ((uint8_t *) ptr + i);
- ctx->buffers[ctx->n_buffers].size = size_step_aligned;
- ctx->buffers[ctx->n_buffers].metal = nil;
-
- if (size_step_aligned > 0) {
- ctx->buffers[ctx->n_buffers].metal = [device newBufferWithBytesNoCopy:(void *) ((uint8_t *) ptr + i) length:size_step_aligned options:MTLResourceStorageModeShared deallocator:nil];
-
- if (ctx->buffers[ctx->n_buffers].metal == nil) {
- GGML_LOG_ERROR("%s: error: failed to allocate buffer, size = %8.2f MiB\n", __func__, size_step_aligned / 1024.0 / 1024.0);
- return false;
- }
- }
-
- ggml_backend_metal_log_allocated_size(device, size_step_aligned);
-
- if (i + size_step < size) {
- GGML_LOG_INFO("\n");
- }
-
- ++ctx->n_buffers;
- }
- }
-
- if (!ggml_backend_metal_buffer_rset_init(ctx, ctx_dev, device)) {
- GGML_LOG_ERROR("%s: error: failed to initialize residency set\n", __func__);
- free(ctx);
- return NULL;
- }
-
- return ggml_backend_buffer_init(ggml_backend_metal_buffer_type_mapped(), ggml_backend_metal_buffer_shared_i, ctx, size);
-}
-
-static bool ggml_backend_metal_device_supports_op(ggml_backend_dev_t dev, const struct ggml_tensor * op) {
- struct ggml_backend_metal_device_context * ctx_dev = dev->context;
-
- return ggml_metal_supports_op(ctx_dev, op);
-}
-
-static bool ggml_backend_metal_device_supports_buft(ggml_backend_dev_t dev, ggml_backend_buffer_type_t buft) {
- return
- buft->iface.get_name == ggml_backend_metal_buffer_type_shared_get_name ||
- buft->iface.get_name == ggml_backend_metal_buffer_type_private_get_name ||
- buft->iface.get_name == ggml_backend_metal_buffer_type_mapped_get_name;
-
- GGML_UNUSED(dev);
-}
-
-static int64_t get_op_batch_size(const struct ggml_tensor * op) {
- switch (op->op) {
- case GGML_OP_MUL_MAT:
- return op->ne[1];
- case GGML_OP_MUL_MAT_ID:
- return op->ne[2];
- default:
- return ggml_nrows(op);
- }
-}
-
-static bool ggml_backend_metal_device_offload_op(ggml_backend_dev_t dev, const struct ggml_tensor * op) {
- const int min_batch_size = 32;
-
- return (op->op == GGML_OP_MUL_MAT ||
- op->op == GGML_OP_MUL_MAT_ID) &&
- get_op_batch_size(op) >= min_batch_size;
-
- GGML_UNUSED(dev);
- GGML_UNUSED(op);
-}
-
-static struct ggml_backend_device_i ggml_backend_metal_device_i = {
- /* .get_name = */ ggml_backend_metal_device_get_name,
- /* .get_description = */ ggml_backend_metal_device_get_description,
- /* .get_memory = */ ggml_backend_metal_device_get_memory,
- /* .get_type = */ ggml_backend_metal_device_get_type,
- /* .get_props = */ ggml_backend_metal_device_get_props,
- /* .init_backend = */ ggml_backend_metal_device_init,
- /* .get_buffer_type = */ ggml_backend_metal_device_get_buffer_type,
- /* .get_host_buffer_type = */ NULL,
- /* .buffer_from_host_ptr = */ ggml_backend_metal_device_buffer_mapped,
- /* .supports_op = */ ggml_backend_metal_device_supports_op,
- /* .supports_buft = */ ggml_backend_metal_device_supports_buft,
- /* .offload_op = */ ggml_backend_metal_device_offload_op,
- /* .event_new = */ NULL,
- /* .event_free = */ NULL,
- /* .event_synchronize = */ NULL,
-};
-
-// backend registry
-
-static const char * ggml_backend_metal_reg_get_name(ggml_backend_reg_t reg) {
- return "Metal";
-
- GGML_UNUSED(reg);
-}
-
-static size_t ggml_backend_metal_reg_device_count(ggml_backend_reg_t reg) {
- return 1;
-
- GGML_UNUSED(reg);
-}
-
-static ggml_backend_dev_t ggml_backend_metal_reg_device_get(ggml_backend_reg_t reg, size_t index) {
- GGML_ASSERT(index == 0);
-
- return &g_ggml_backend_metal_device;
-
- GGML_UNUSED(reg);
- GGML_UNUSED(index);
-}
-
-static struct ggml_backend_feature g_ggml_backend_metal_features[] = {
-#if defined(GGML_METAL_EMBED_LIBRARY)
- { "EMBED_LIBRARY", "1" },
-#endif
-#if defined(GGML_METAL_USE_BF16)
- { "BF16", "1" },
-#endif
- { nil, nil },
-};
-
-static struct ggml_backend_feature * ggml_backend_metal_get_features(ggml_backend_reg_t reg) {
- return g_ggml_backend_metal_features;
-
- GGML_UNUSED(reg);
-}
-
-static void * ggml_backend_metal_get_proc_address(ggml_backend_reg_t reg, const char * name) {
- if (strcmp(name, "ggml_backend_get_features") == 0) {
- return (void *)ggml_backend_metal_get_features;
- }
-
- return NULL;
-
- GGML_UNUSED(reg);
-}
-static struct ggml_backend_reg_i ggml_backend_metal_reg_i = {
- /* .get_name = */ ggml_backend_metal_reg_get_name,
- /* .device_count = */ ggml_backend_metal_reg_device_count,
- /* .device_get = */ ggml_backend_metal_reg_device_get,
- /* .get_proc_address = */ ggml_backend_metal_get_proc_address,
-};
-
-// called upon program exit
-static void ggml_metal_cleanup(void) {
- ggml_backend_metal_device_rel(&g_ggml_ctx_dev_main);
-}
-
-// TODO: make thread-safe
-ggml_backend_reg_t ggml_backend_metal_reg(void) {
- ggml_backend_metal_device_acq(&g_ggml_ctx_dev_main);
-
- // register cleanup callback
- // TODO: not ideal, but not sure if there is a better way to do this in Objective-C
- atexit(ggml_metal_cleanup);
-
- {
- g_ggml_backend_metal_reg = (struct ggml_backend_reg) {
- /* .api_version = */ GGML_BACKEND_API_VERSION,
- /* .iface = */ ggml_backend_metal_reg_i,
- /* .context = */ NULL,
- };
-
- g_ggml_backend_metal_device = (struct ggml_backend_device) {
- /* .iface = */ ggml_backend_metal_device_i,
- /* .reg = */ &g_ggml_backend_metal_reg,
- /* .context = */ &g_ggml_ctx_dev_main,
- };
- }
-
- return &g_ggml_backend_metal_reg;
-}
-
-GGML_BACKEND_DL_IMPL(ggml_backend_metal_reg)
// .../usr/bin/metal -dM -E -c ggml/src/ggml-metal/ggml-metal.metal
// .../usr/bin/metal -dM -E -c -target air64-apple-ios14.0 ggml/src/ggml-metal/ggml-metal.metal
//
-#if __METAL_VERSION__ < 310 && defined(GGML_METAL_USE_BF16)
-#undef GGML_METAL_USE_BF16
+#if __METAL_VERSION__ < 310 && defined(GGML_METAL_HAS_BF16)
+#undef GGML_METAL_HAS_BF16
#endif
-#if defined(GGML_METAL_USE_BF16)
+#if defined(GGML_METAL_HAS_BF16)
typedef matrix<bfloat, 4, 4> bfloat4x4;
#endif
reg = (type4)(*(src));
}
-#if defined(GGML_METAL_USE_BF16)
+#if defined(GGML_METAL_HAS_BF16)
template <typename type4x4>
void dequantize_bf16(device const bfloat4x4 * src, short il, thread type4x4 & reg) {
reg = (type4x4)(*src);
template [[host_name("kernel_div_row_c4_fuse_1")]] kernel kernel_div_row_c4_fuse_t kernel_div_row_c4_fuse_impl<1>;
-kernel void kernel_scale(
+kernel void kernel_scale_f32(
+ constant ggml_metal_kargs_scale & args,
device const float * src0,
device float * dst,
- constant float & scale,
- constant float & bias,
uint tpig[[thread_position_in_grid]]) {
- dst[tpig] = src0[tpig] * scale + bias;
+ dst[tpig] = src0[tpig] * args.scale + args.bias;
}
-kernel void kernel_scale_4(
+kernel void kernel_scale_f32_4(
+ constant ggml_metal_kargs_scale & args,
device const float4 * src0,
device float4 * dst,
- constant float & scale,
- constant float & bias,
uint tpig[[thread_position_in_grid]]) {
- dst[tpig] = src0[tpig] * scale + bias;
+ dst[tpig] = src0[tpig] * args.scale + args.bias;
}
-kernel void kernel_clamp(
+kernel void kernel_clamp_f32(
+ constant ggml_metal_kargs_clamp & args,
device const float * src0,
device float * dst,
- constant float & min,
- constant float & max,
uint tpig[[thread_position_in_grid]]) {
- dst[tpig] = src0[tpig] < min ? min : (src0[tpig] > max ? max : src0[tpig]);
+ dst[tpig] = clamp(src0[tpig], args.min, args.max);
}
-kernel void kernel_relu(
+kernel void kernel_clamp_f32_4(
+ constant ggml_metal_kargs_clamp & args,
+ device const float4 * src0,
+ device float4 * dst,
+ uint tpig[[thread_position_in_grid]]) {
+ dst[tpig] = clamp(src0[tpig], args.min, args.max);
+}
+
+kernel void kernel_relu_f32(
device const float * src0,
device float * dst,
uint tpig[[thread_position_in_grid]]) {
dst[tpig] = max(0.0f, src0[tpig]);
}
-kernel void kernel_sigmoid(
+kernel void kernel_relu_f32_4(
+ device const float4 * src0,
+ device float4 * dst,
+ uint tpig[[thread_position_in_grid]]) {
+ dst[tpig] = max(0.0f, src0[tpig]);
+}
+
+kernel void kernel_sigmoid_f32(
device const float * src0,
device float * dst,
uint tpig[[thread_position_in_grid]]) {
dst[tpig] = 1.0f / (1.0f + exp(-src0[tpig]));
}
-kernel void kernel_tanh(
+kernel void kernel_sigmoid_f32_4(
+ device const float4 * src0,
+ device float4 * dst,
+ uint tpig[[thread_position_in_grid]]) {
+ dst[tpig] = 1.0f / (1.0f + exp(-src0[tpig]));
+}
+
+kernel void kernel_tanh_f32(
device const float * src0,
device float * dst,
uint tpig[[thread_position_in_grid]]) {
- device const float & x = src0[tpig];
- dst[tpig] = precise::tanh(x);
+ dst[tpig] = precise::tanh(src0[tpig]);
+}
+
+kernel void kernel_tanh_f32_4(
+ device const float4 * src0,
+ device float4 * dst,
+ uint tpig[[thread_position_in_grid]]) {
+ dst[tpig] = precise::tanh(src0[tpig]);
}
constant float GELU_COEF_A = 0.044715f;
constant float SQRT_2_OVER_PI = 0.79788456080286535587989211986876f;
constant float SQRT_2_INV = 0.70710678118654752440084436210484f;
-kernel void kernel_gelu(
+kernel void kernel_gelu_f32(
device const float * src0,
device float * dst,
uint tpig[[thread_position_in_grid]]) {
dst[tpig] = 0.5f*x*(1.0f + precise::tanh(SQRT_2_OVER_PI*x*(1.0f + GELU_COEF_A*x*x)));
}
-kernel void kernel_gelu_4(
+kernel void kernel_gelu_f32_4(
device const float4 * src0,
device float4 * dst,
uint tpig[[thread_position_in_grid]]) {
dst[tpig] = 0.5f*x*(1.0f + precise::tanh(SQRT_2_OVER_PI*x*(1.0f + GELU_COEF_A*x*x)));
}
-kernel void kernel_gelu_quick(
+kernel void kernel_gelu_quick_f32(
device const float * src0,
device float * dst,
uint tpig[[thread_position_in_grid]]) {
dst[tpig] = x*(1.0f/(1.0f+exp(GELU_QUICK_COEF*x)));
}
-kernel void kernel_gelu_quick_4(
+kernel void kernel_gelu_quick_f32_4(
device const float4 * src0,
device float4 * dst,
uint tpig[[thread_position_in_grid]]) {
return sign_x * y;
}
-kernel void kernel_gelu_erf(
+kernel void kernel_gelu_erf_f32(
device const float * src0,
device float * dst,
uint tpig[[thread_position_in_grid]]) {
dst[tpig] = 0.5f*x*(1.0f+erf_approx<float>(x*SQRT_2_INV));
}
-kernel void kernel_gelu_erf_4(
+kernel void kernel_gelu_erf_f32_4(
device const float4 * src0,
device float4 * dst,
uint tpig[[thread_position_in_grid]]) {
dst[tpig] = 0.5f*x*(1.0f+erf_approx<float4>(x*SQRT_2_INV));
}
-kernel void kernel_silu(
+kernel void kernel_silu_f32(
device const float * src0,
device float * dst,
uint tpig[[thread_position_in_grid]]) {
dst[tpig] = x / (1.0f + exp(-x));
}
-kernel void kernel_silu_4(
+kernel void kernel_silu_f32_4(
device const float4 * src0,
device float4 * dst,
uint tpig[[thread_position_in_grid]]) {
dst[tpig] = x / (1.0f + exp(-x));
}
-kernel void kernel_elu(
+kernel void kernel_elu_f32(
device const float * src0,
device float * dst,
uint tpig[[thread_position_in_grid]]) {
- device const float & x = src0[tpig];
+ const float x = src0[tpig];
dst[tpig] = (x > 0.0f) ? x : (exp(x) - 1.0f);
}
-kernel void kernel_sqr(
+kernel void kernel_elu_f32_4(
+ device const float4 * src0,
+ device float4 * dst,
+ uint tpig[[thread_position_in_grid]]) {
+ const float4 x = src0[tpig];
+ dst[tpig][0] = (x[0] > 0.0f) ? x[0] : (exp(x[0]) - 1.0f);
+ dst[tpig][1] = (x[1] > 0.0f) ? x[1] : (exp(x[1]) - 1.0f);
+ dst[tpig][2] = (x[2] > 0.0f) ? x[2] : (exp(x[2]) - 1.0f);
+ dst[tpig][3] = (x[3] > 0.0f) ? x[3] : (exp(x[3]) - 1.0f);
+}
+
+kernel void kernel_sqr_f32(
device const float * src0,
device float * dst,
uint tpig[[thread_position_in_grid]]) {
dst[tpig] = src0[tpig] * src0[tpig];
}
-kernel void kernel_sqrt(
+kernel void kernel_sqr_f32_4(
+ device const float4 * src0,
+ device float4 * dst,
+ uint tpig[[thread_position_in_grid]]) {
+ dst[tpig] = src0[tpig] * src0[tpig];
+}
+
+kernel void kernel_sqrt_f32(
device const float * src0,
device float * dst,
uint tpig[[thread_position_in_grid]]) {
dst[tpig] = sqrt(src0[tpig]);
}
-kernel void kernel_sin(
+kernel void kernel_sqrt_f32_4(
+ device const float4 * src0,
+ device float4 * dst,
+ uint tpig[[thread_position_in_grid]]) {
+ dst[tpig] = sqrt(src0[tpig]);
+}
+
+kernel void kernel_sin_f32(
device const float * src0,
device float * dst,
uint tpig[[thread_position_in_grid]]) {
dst[tpig] = sin(src0[tpig]);
}
-kernel void kernel_cos(
+kernel void kernel_sin_f32_4(
+ device const float4 * src0,
+ device float4 * dst,
+ uint tpig[[thread_position_in_grid]]) {
+ dst[tpig] = sin(src0[tpig]);
+}
+
+kernel void kernel_cos_f32(
device const float * src0,
device float * dst,
uint tpig[[thread_position_in_grid]]) {
dst[tpig] = cos(src0[tpig]);
}
-kernel void kernel_neg(
+kernel void kernel_cos_f32_4(
+ device const float4 * src0,
+ device float4 * dst,
+ uint tpig[[thread_position_in_grid]]) {
+ dst[tpig] = cos(src0[tpig]);
+}
+
+kernel void kernel_log_f32(
+ device const float * src0,
+ device float * dst,
+ uint tpig[[thread_position_in_grid]]) {
+ dst[tpig] = log(src0[tpig]);
+}
+
+kernel void kernel_log_f32_4(
+ device const float4 * src0,
+ device float4 * dst,
+ uint tpig[[thread_position_in_grid]]) {
+ dst[tpig] = log(src0[tpig]);
+}
+
+kernel void kernel_neg_f32(
device const float * src0,
device float * dst,
uint tpig[[thread_position_in_grid]]) {
dst[tpig] = -src0[tpig];
}
-kernel void kernel_abs(
+kernel void kernel_neg_f32_4(
+ device const float4 * src0,
+ device float4 * dst,
+ uint tpig[[thread_position_in_grid]]) {
+ dst[tpig] = -src0[tpig];
+}
+
+kernel void kernel_abs_f32(
device const float * src0,
device float * dst,
uint tpig[[thread_position_in_grid]]) {
dst[tpig] = fabs(src0[tpig]);
}
-kernel void kernel_sgn(
+kernel void kernel_abs_f32_4(
+ device const float4 * src0,
+ device float4 * dst,
+ uint tpig[[thread_position_in_grid]]) {
+ dst[tpig] = fabs(src0[tpig]);
+}
+
+kernel void kernel_sgn_f32(
device const float * src0,
device float * dst,
uint tpig[[thread_position_in_grid]]) {
- device const float & x = src0[tpig];
- dst[tpig] = (x > 0.0f) ? 1.0f : ((x < 0.0f) ? -1.0f : 0.0f);
+ dst[tpig] = sign(src0[tpig]);
+}
+
+kernel void kernel_sgn_f32_4(
+ device const float4 * src0,
+ device float4 * dst,
+ uint tpig[[thread_position_in_grid]]) {
+ dst[tpig] = sign(src0[tpig]);
}
-kernel void kernel_step(
+kernel void kernel_step_f32(
device const float * src0,
device float * dst,
uint tpig[[thread_position_in_grid]]) {
- dst[tpig] = src0[tpig] > 0.0f ? 1.0f : 0.0f;
+ dst[tpig] = step(0.0f, src0[tpig]);
+}
+
+kernel void kernel_step_f32_4(
+ device const float4 * src0,
+ device float4 * dst,
+ uint tpig[[thread_position_in_grid]]) {
+ dst[tpig] = step(0.0f, src0[tpig]);
}
-kernel void kernel_hardswish(
+kernel void kernel_hardswish_f32(
device const float * src0,
device float * dst,
uint tpig[[thread_position_in_grid]]) {
- device const float & x = src0[tpig];
+ const float x = src0[tpig];
+ dst[tpig] = x * fmin(1.0f, fmax(0.0f, (x + 3.0f) / 6.0f));
+}
+
+kernel void kernel_hardswish_f32_4(
+ device const float4 * src0,
+ device float4 * dst,
+ uint tpig[[thread_position_in_grid]]) {
+ const float4 x = src0[tpig];
dst[tpig] = x * fmin(1.0f, fmax(0.0f, (x + 3.0f) / 6.0f));
}
-kernel void kernel_hardsigmoid(
+kernel void kernel_hardsigmoid_f32(
device const float * src0,
device float * dst,
uint tpig[[thread_position_in_grid]]) {
- device const float & x = src0[tpig];
+ const float x = src0[tpig];
+ dst[tpig] = fmin(1.0f, fmax(0.0f, (x + 3.0f) / 6.0f));
+}
+
+kernel void kernel_hardsigmoid_f32_4(
+ device const float4 * src0,
+ device float4 * dst,
+ uint tpig[[thread_position_in_grid]]) {
+ const float4 x = src0[tpig];
dst[tpig] = fmin(1.0f, fmax(0.0f, (x + 3.0f) / 6.0f));
}
-kernel void kernel_exp(
+kernel void kernel_exp_f32(
device const float * src0,
device float * dst,
uint tpig[[thread_position_in_grid]]) {
dst[tpig] = exp(src0[tpig]);
}
-kernel void kernel_reglu(
+kernel void kernel_exp_f32_4(
+ device const float4 * src0,
+ device float4 * dst,
+ uint tpig[[thread_position_in_grid]]) {
+ dst[tpig] = exp(src0[tpig]);
+}
+
+kernel void kernel_reglu_f32(
+ constant ggml_metal_kargs_glu & args,
device const char * src0,
device const char * src1,
device char * dst,
- constant ggml_metal_kargs_glu & args,
uint tgpig[[threadgroup_position_in_grid]],
uint tpitg[[thread_position_in_threadgroup]],
uint ntg[[threads_per_threadgroup]]) {
}
}
-kernel void kernel_geglu(
+kernel void kernel_geglu_f32(
+ constant ggml_metal_kargs_glu & args,
device const char * src0,
device const char * src1,
device char * dst,
- constant ggml_metal_kargs_glu & args,
uint tgpig[[threadgroup_position_in_grid]],
uint tpitg[[thread_position_in_threadgroup]],
uint ntg[[threads_per_threadgroup]]) {
}
}
-kernel void kernel_swiglu(
+kernel void kernel_swiglu_f32(
+ constant ggml_metal_kargs_glu & args,
device const char * src0,
device const char * src1,
device char * dst,
- constant ggml_metal_kargs_glu & args,
uint tgpig[[threadgroup_position_in_grid]],
uint tpitg[[thread_position_in_threadgroup]],
uint ntg[[threads_per_threadgroup]]) {
}
}
-kernel void kernel_swiglu_oai(
+kernel void kernel_swiglu_oai_f32(
+ constant ggml_metal_kargs_glu & args,
device const char * src0,
device const char * src1,
device char * dst,
- constant ggml_metal_kargs_glu & args,
uint tgpig[[threadgroup_position_in_grid]],
uint tpitg[[thread_position_in_threadgroup]],
uint ntg[[threads_per_threadgroup]]) {
}
}
-kernel void kernel_geglu_erf(
+kernel void kernel_geglu_erf_f32(
+ constant ggml_metal_kargs_glu & args,
device const char * src0,
device const char * src1,
device char * dst,
- constant ggml_metal_kargs_glu & args,
uint tgpig[[threadgroup_position_in_grid]],
uint tpitg[[thread_position_in_threadgroup]],
uint ntg[[threads_per_threadgroup]]) {
}
}
-kernel void kernel_geglu_quick(
+kernel void kernel_geglu_quick_f32(
+ constant ggml_metal_kargs_glu & args,
device const char * src0,
device const char * src1,
device char * dst,
- constant ggml_metal_kargs_glu & args,
uint tgpig[[threadgroup_position_in_grid]],
uint tpitg[[thread_position_in_threadgroup]],
uint ntg[[threads_per_threadgroup]]) {
typedef decltype(kernel_sum_rows<false>) kernel_sum_rows_t;
-template [[host_name("kernel_sum_rows")]] kernel kernel_sum_rows_t kernel_sum_rows<false>;
-template [[host_name("kernel_mean")]] kernel kernel_sum_rows_t kernel_sum_rows<true>;
+template [[host_name("kernel_sum_rows_f32")]] kernel kernel_sum_rows_t kernel_sum_rows<false>;
+template [[host_name("kernel_mean_f32")]] kernel kernel_sum_rows_t kernel_sum_rows<true>;
template<typename T>
kernel void kernel_soft_max(
+ constant ggml_metal_kargs_soft_max & args,
device const char * src0,
device const char * src1,
device const char * src2,
device char * dst,
- constant ggml_metal_kargs_soft_max & args,
threadgroup float * buf [[threadgroup(0)]],
uint3 tgpig[[threadgroup_position_in_grid]],
uint3 tpitg[[thread_position_in_threadgroup]],
template<typename T>
kernel void kernel_soft_max_4(
+ constant ggml_metal_kargs_soft_max & args,
device const char * src0,
device const char * src1,
device const char * src2,
device char * dst,
- constant ggml_metal_kargs_soft_max & args,
threadgroup float * buf [[threadgroup(0)]],
uint3 tgpig[[threadgroup_position_in_grid]],
uint3 tpitg[[thread_position_in_threadgroup]],
template [[host_name("kernel_soft_max_f16_4")]] kernel kernel_soft_max_4_t kernel_soft_max_4<half4>;
template [[host_name("kernel_soft_max_f32_4")]] kernel kernel_soft_max_4_t kernel_soft_max_4<float4>;
-kernel void kernel_diag_mask_inf(
- device const float * src0,
- device float * dst,
- constant ggml_metal_kargs_diag_mask_inf & args,
- uint3 tpig[[thread_position_in_grid]]) {
- const int64_t i02 = tpig[2];
- const int64_t i01 = tpig[1];
- const int64_t i00 = tpig[0];
-
- if (i00 > args.n_past + i01) {
- dst[i02*args.ne01*args.ne00 + i01*args.ne00 + i00] = -INFINITY;
- } else {
- dst[i02*args.ne01*args.ne00 + i01*args.ne00 + i00] = src0[i02*args.ne01*args.ne00 + i01*args.ne00 + i00];
- }
-}
-
-kernel void kernel_diag_mask_inf_8(
- device const float4 * src0,
- device float4 * dst,
- constant ggml_metal_kargs_diag_mask_inf & args,
- uint3 tpig[[thread_position_in_grid]]) {
-
- const int64_t i = 2*tpig[0];
-
- dst[i+0] = src0[i+0];
- dst[i+1] = src0[i+1];
- int64_t i4 = 4*i;
- const int64_t i02 = i4/(args.ne00*args.ne01); i4 -= i02*args.ne00*args.ne01;
- const int64_t i01 = i4/(args.ne00); i4 -= i01*args.ne00;
- const int64_t i00 = i4;
- for (int k = 3; k >= 0; --k) {
- if (i00 + 4 + k <= args.n_past + i01) {
- break;
- }
- dst[i+1][k] = -INFINITY;
- if (i00 + k > args.n_past + i01) {
- dst[i][k] = -INFINITY;
- }
- }
-}
-
// ref: ggml.c:ggml_compute_forward_ssm_conv_f32
-kernel void kernel_ssm_conv_f32(
+kernel void kernel_ssm_conv_f32_f32(
+ constant ggml_metal_kargs_ssm_conv & args,
device const void * src0,
device const void * src1,
device float * dst,
- constant ggml_metal_kargs_ssm_conv & args,
uint3 tgpig[[threadgroup_position_in_grid]],
uint3 tpitg[[thread_position_in_threadgroup]],
uint3 ntg[[threads_per_threadgroup]]) {
// ref: ggml.c:ggml_compute_forward_ssm_scan_f32, Mamba-1 part
kernel void kernel_ssm_scan_f32(
+ constant ggml_metal_kargs_ssm_scan & args,
device const void * src0,
device const void * src1,
device const void * src2,
device const void * src6,
device float * dst,
threadgroup float * shared [[threadgroup(0)]],
- constant ggml_metal_kargs_ssm_scan & args,
uint3 tgpig[[threadgroup_position_in_grid]],
uint3 tpitg[[thread_position_in_threadgroup]],
ushort sgitg[[simdgroup_index_in_threadgroup]],
}
// ref: ggml.c:ggml_compute_forward_ssm_scan_f32, Mamba-2 part
-kernel void kernel_ssm_scan_f32_group(
+kernel void kernel_ssm_scan_group_f32(
+ constant ggml_metal_kargs_ssm_scan & args,
device const void * src0,
device const void * src1,
device const void * src2,
device const void * src6,
device float * dst,
threadgroup float * shared [[threadgroup(0)]],
- constant ggml_metal_kargs_ssm_scan & args,
uint3 tgpig[[threadgroup_position_in_grid]],
uint3 tpitg[[thread_position_in_threadgroup]],
ushort sgitg[[simdgroup_index_in_threadgroup]],
}
}
-kernel void kernel_argmax(
- device const void * x,
- device int32_t * dst,
- constant int64_t & ncols,
- constant uint64_t & nb01,
- threadgroup float * shared_maxval [[threadgroup(0)]],
- threadgroup int32_t * shared_argmax [[threadgroup(1)]],
+kernel void kernel_argmax_f32(
+ constant ggml_metal_kargs_argmax & args,
+ device const char * src0,
+ device char * dst,
+ threadgroup char * shmem [[threadgroup(0)]],
uint tgpig[[threadgroup_position_in_grid]],
uint tpitg[[thread_position_in_threadgroup]],
uint sgitg[[simdgroup_index_in_threadgroup]],
uint tiisg[[thread_index_in_simdgroup]],
uint ntg[[threads_per_threadgroup]]) {
- device const float * x_row = (device const float *) ((device const char *) x + tgpig * nb01);
+ device const float * x_row = (device const float *) ((device const char *) src0 + tgpig * args.nb01);
float lmax = -INFINITY;
int32_t larg = -1;
- for (int i00 = tpitg; i00 < ncols; i00 += ntg) {
+ for (int i00 = tpitg; i00 < args.ne00; i00 += ntg) {
if (x_row[i00] > lmax) {
lmax = x_row[i00];
larg = i00;
float max_val = simd_max(lmax);
int32_t arg_val = simd_max(select(-1, larg, lmax == max_val));
+ device int32_t * dst_i32 = (device int32_t *) dst;
+
+ threadgroup float * shared_maxval = (threadgroup float *) shmem;
+ threadgroup int32_t * shared_argmax = (threadgroup int32_t *) shmem + N_SIMDWIDTH;
+
if (ntg > N_SIMDWIDTH) {
if (sgitg == 0) {
shared_maxval[tiisg] = -INFINITY;
float max_val_reduced = simd_max(max_val);
int32_t arg_val_reduced = simd_max(select(-1, arg_val, max_val == max_val_reduced));
- dst[tgpig] = arg_val_reduced;
+ dst_i32[tgpig] = arg_val_reduced;
return;
}
- dst[tgpig] = arg_val;
+ dst_i32[tgpig] = arg_val;
}
-kernel void kernel_norm(
+kernel void kernel_norm_f32(
constant ggml_metal_kargs_norm & args,
device const char * src0,
device char * dst,
typedef decltype(kernel_rms_norm_fuse_impl<1>) kernel_rms_norm_fuse_t;
-template [[host_name("kernel_rms_norm")]] kernel kernel_rms_norm_fuse_t kernel_rms_norm_fuse_impl<1>;
-template [[host_name("kernel_rms_norm_mul")]] kernel kernel_rms_norm_fuse_t kernel_rms_norm_fuse_impl<2>;
-template [[host_name("kernel_rms_norm_mul_add")]] kernel kernel_rms_norm_fuse_t kernel_rms_norm_fuse_impl<3>;
+template [[host_name("kernel_rms_norm_f32")]] kernel kernel_rms_norm_fuse_t kernel_rms_norm_fuse_impl<1>;
+template [[host_name("kernel_rms_norm_mul_f32")]] kernel kernel_rms_norm_fuse_t kernel_rms_norm_fuse_impl<2>;
+template [[host_name("kernel_rms_norm_mul_add_f32")]] kernel kernel_rms_norm_fuse_t kernel_rms_norm_fuse_impl<3>;
-kernel void kernel_l2_norm(
+kernel void kernel_l2_norm_f32(
constant ggml_metal_kargs_l2_norm & args,
device const char * src0,
device char * dst,
}
}
-kernel void kernel_group_norm(
+kernel void kernel_group_norm_f32(
+ constant ggml_metal_kargs_group_norm & args,
device const float * src0,
device float * dst,
- constant ggml_metal_kargs_group_norm & args,
threadgroup float * buf [[threadgroup(0)]],
uint tgpig[[threadgroup_position_in_grid]],
uint tpitg[[thread_position_in_threadgroup]],
uint tiisg[[thread_index_in_simdgroup]],
uint ntg[[threads_per_threadgroup]]) {
const int64_t ne = args.ne00*args.ne01*args.ne02;
- const int64_t gs = args.ne00*args.ne01*((args.ne02 + args.n_groups - 1) / args.n_groups);
+ const int64_t gs = args.ne00*args.ne01*((args.ne02 + args.ngrp - 1) / args.ngrp);
int start = tgpig * gs;
int end = start + gs;
template [[host_name("kernel_mul_mv_f32_f32")]] kernel mul_mv_t kernel_mul_mv<float, float4, float, float4>;
template [[host_name("kernel_mul_mv_f16_f32")]] kernel mul_mv_t kernel_mul_mv<half, half4, float, float4>;
template [[host_name("kernel_mul_mv_f16_f16")]] kernel mul_mv_t kernel_mul_mv<half, half4, half, half4>;
-#if defined(GGML_METAL_USE_BF16)
+#if defined(GGML_METAL_HAS_BF16)
template [[host_name("kernel_mul_mv_bf16_f32")]] kernel mul_mv_t kernel_mul_mv<bfloat, bfloat4, float, float4>;
template [[host_name("kernel_mul_mv_bf16_bf16")]] kernel mul_mv_t kernel_mul_mv<bfloat, bfloat4, bfloat, bfloat4>;
#endif
template [[host_name("kernel_mul_mv_f32_f32_c4")]] kernel mul_mv_c4_t kernel_mul_mv_c4<float4, float4>;
template [[host_name("kernel_mul_mv_f16_f32_c4")]] kernel mul_mv_c4_t kernel_mul_mv_c4<half4, float4>;
-#if defined(GGML_METAL_USE_BF16)
+#if defined(GGML_METAL_HAS_BF16)
template [[host_name("kernel_mul_mv_bf16_f32_c4")]] kernel mul_mv_c4_t kernel_mul_mv_c4<bfloat4, float4>;
#endif
typedef decltype(kernel_mul_mv_1row<half, half4>) mul_mv_1row_t;
template [[host_name("kernel_mul_mv_f16_f32_1row")]] kernel mul_mv_1row_t kernel_mul_mv_1row<half, half4>;
-#if defined(GGML_METAL_USE_BF16)
+#if defined(GGML_METAL_HAS_BF16)
template [[host_name("kernel_mul_mv_bf16_f32_1row")]] kernel mul_mv_1row_t kernel_mul_mv_1row<bfloat, bfloat4>;
#endif
typedef decltype(kernel_mul_mv_l4<half, half4>) mul_mv_l4_t;
template [[host_name("kernel_mul_mv_f16_f32_l4")]] kernel mul_mv_l4_t kernel_mul_mv_l4<half, half4>;
-#if defined(GGML_METAL_USE_BF16)
+#if defined(GGML_METAL_HAS_BF16)
template [[host_name("kernel_mul_mv_bf16_f32_l4")]] kernel mul_mv_l4_t kernel_mul_mv_l4<bfloat, bfloat4>;
#endif
template [[host_name("kernel_rope_vision_f32")]] kernel kernel_rope_vision_t kernel_rope_vision<float>;
template [[host_name("kernel_rope_vision_f16")]] kernel kernel_rope_vision_t kernel_rope_vision<half>;
-typedef void (im2col_t)(
- device const float * x,
- device char * dst,
- constant ggml_metal_kargs_im2col & args,
- uint3 tgpig[[threadgroup_position_in_grid]],
- uint3 tgpg[[threadgroups_per_grid]],
- uint3 tpitg[[thread_position_in_threadgroup]],
- uint3 ntg[[threads_per_threadgroup]]);
-
-template <typename T>
-kernel void kernel_im2col(
- device const float * x,
- device char * dst,
- constant ggml_metal_kargs_im2col & args,
- uint3 tgpig[[threadgroup_position_in_grid]],
- uint3 tgpg[[threadgroups_per_grid]],
- uint3 tpitg[[thread_position_in_threadgroup]],
- uint3 ntg[[threads_per_threadgroup]]) {
-// const int64_t IC = tgpg[0];
- const int64_t OH = tgpg[1];
- const int64_t OW = tgpg[2];
-
-// const int64_t N = ntg[0];
- const int64_t KH = ntg[1];
- const int64_t KW = ntg[2];
-
- const int64_t in = tpitg[0];
- const int64_t ikh = tpitg[1];
- const int64_t ikw = tpitg[2];
-
- const int64_t iic = tgpig[0];
- const int64_t ioh = tgpig[1];
- const int64_t iow = tgpig[2];
-
- const int64_t iiw = iow*args.s0 + ikw*args.d0 - args.p0;
- const int64_t iih = ioh*args.s1 + ikh*args.d1 - args.p1;
-
- const int64_t offset_dst = (in*OH*OW + ioh*OW + iow)*args.CHW + (iic*(KH*KW) + ikh*KW + ikw);
-
- device T * pdst = (device T *) (dst);
-
- if (iih < 0 || iih >= args.IH || iiw < 0 || iiw >= args.IW) {
- pdst[offset_dst] = 0.0f;
- } else {
- const int64_t offset_src = in*args.ofs0 + iic*args.ofs1 + iih*args.IW + iiw;
- pdst[offset_dst] = x[offset_src];
- }
-}
-
-template [[host_name("kernel_im2col_f32")]] kernel im2col_t kernel_im2col<float>;
-template [[host_name("kernel_im2col_f16")]] kernel im2col_t kernel_im2col<half>;
+// TODO: obolete -- remove
+//typedef void (im2col_t)(
+// constant ggml_metal_kargs_im2col & args,
+// device const float * x,
+// device char * dst,
+// uint3 tgpig[[threadgroup_position_in_grid]],
+// uint3 tgpg[[threadgroups_per_grid]],
+// uint3 tpitg[[thread_position_in_threadgroup]],
+// uint3 ntg[[threads_per_threadgroup]]);
+//
+//template <typename T>
+//kernel void kernel_im2col(
+// constant ggml_metal_kargs_im2col & args,
+// device const float * x,
+// device char * dst,
+// uint3 tgpig[[threadgroup_position_in_grid]],
+// uint3 tgpg[[threadgroups_per_grid]],
+// uint3 tpitg[[thread_position_in_threadgroup]],
+// uint3 ntg[[threads_per_threadgroup]]) {
+//// const int64_t IC = tgpg[0];
+// const int64_t OH = tgpg[1];
+// const int64_t OW = tgpg[2];
+//
+//// const int64_t N = ntg[0];
+// const int64_t KH = ntg[1];
+// const int64_t KW = ntg[2];
+//
+// const int64_t in = tpitg[0];
+// const int64_t ikh = tpitg[1];
+// const int64_t ikw = tpitg[2];
+//
+// const int64_t iic = tgpig[0];
+// const int64_t ioh = tgpig[1];
+// const int64_t iow = tgpig[2];
+//
+// const int64_t iiw = iow*args.s0 + ikw*args.d0 - args.p0;
+// const int64_t iih = ioh*args.s1 + ikh*args.d1 - args.p1;
+//
+// const int64_t offset_dst = (in*OH*OW + ioh*OW + iow)*args.CHW + (iic*(KH*KW) + ikh*KW + ikw);
+//
+// device T * pdst = (device T *) (dst);
+//
+// if (iih < 0 || iih >= args.IH || iiw < 0 || iiw >= args.IW) {
+// pdst[offset_dst] = 0.0f;
+// } else {
+// const int64_t offset_src = in*args.ofs0 + iic*args.ofs1 + iih*args.IW + iiw;
+// pdst[offset_dst] = x[offset_src];
+// }
+//}
+//
+//template [[host_name("kernel_im2col_f32")]] kernel im2col_t kernel_im2col<float>;
+//template [[host_name("kernel_im2col_f16")]] kernel im2col_t kernel_im2col<half>;
typedef void (im2col_ext_t)(
+ constant ggml_metal_kargs_im2col & args,
device const float * x,
device char * dst,
- constant ggml_metal_kargs_im2col & args,
uint3 tgpig[[threadgroup_position_in_grid]],
uint3 tgpg[[threadgroups_per_grid]],
uint3 tpitg[[thread_position_in_threadgroup]],
template <typename T>
kernel void kernel_im2col_ext(
+ constant ggml_metal_kargs_im2col & args,
device const float * x,
device char * dst,
- constant ggml_metal_kargs_im2col & args,
uint3 tgpig[[threadgroup_position_in_grid]],
uint3 tgpg[[threadgroups_per_grid]], // tgpg[0] = D x IC x KH x KW, CHW = IC x KH x KW
uint3 tpitg[[thread_position_in_threadgroup]],
uint3 ntg[[threads_per_threadgroup]]) { // [M, 1, 1]
const int64_t KHW = (int64_t)args.KHW;
- const int64_t d = tgpig[0] / args.CHW;
+ const int64_t d = tgpig[0] / args.CHW;
const int64_t chw = tgpig[0] % args.CHW;
const int64_t tgpig_0 = chw / KHW; // 0 ~ (IC - 1)
const int64_t HW = tgpig[0] % KHW;
template [[host_name("kernel_im2col_ext_f16")]] kernel im2col_ext_t kernel_im2col_ext<half>;
typedef void (conv_transpose_1d_t)(
+ constant ggml_metal_kargs_conv_transpose_1d & args,
device const float * src0,
device const float * src1,
device char * dst,
- constant ggml_metal_kargs_conv_transpose_1d & args,
uint3 tgpig[[threadgroup_position_in_grid]],
uint3 tgpg[[threadgroups_per_grid]]);
template <typename T>
kernel void kernel_conv_transpose_1d(
+ constant ggml_metal_kargs_conv_transpose_1d & args,
device const T * src0,
device const float * src1,
device char * dst,
- constant ggml_metal_kargs_conv_transpose_1d & args,
uint3 tgpig[[threadgroup_position_in_grid]],
uint3 tgpg[[threadgroups_per_grid]]) {
template [[host_name("kernel_conv_transpose_1d_f32_f32")]]
kernel void kernel_conv_transpose_1d<float>(
+ constant ggml_metal_kargs_conv_transpose_1d & args,
device const float * src0,
device const float * src1,
device char * dst,
- constant ggml_metal_kargs_conv_transpose_1d & args,
uint3 tgpig[[threadgroup_position_in_grid]],
uint3 tgpg[[threadgroups_per_grid]]);
template [[host_name("kernel_conv_transpose_1d_f16_f32")]]
kernel void kernel_conv_transpose_1d<half>(
+ constant ggml_metal_kargs_conv_transpose_1d & args,
device const half * src0,
device const float * src1,
device char * dst,
- constant ggml_metal_kargs_conv_transpose_1d & args,
uint3 tgpig[[threadgroup_position_in_grid]],
uint3 tgpg[[threadgroups_per_grid]]);
kernel void kernel_upscale_f32(
+ constant ggml_metal_kargs_upscale & args,
device const char * src0,
device char * dst,
- constant ggml_metal_kargs_upscale & args,
uint3 tgpig[[threadgroup_position_in_grid]],
uint3 tpitg[[thread_position_in_threadgroup]],
uint3 ntg[[threads_per_threadgroup]]) {
}
kernel void kernel_pad_f32(
+ constant ggml_metal_kargs_pad & args,
device const char * src0,
device char * dst,
- constant ggml_metal_kargs_pad & args,
uint3 tgpig[[threadgroup_position_in_grid]],
uint3 tpitg[[thread_position_in_threadgroup]],
uint3 ntg[[threads_per_threadgroup]]) {
}
kernel void kernel_pad_reflect_1d_f32(
+ constant ggml_metal_kargs_pad_reflect_1d & args,
device const char * src0,
device char * dst,
- constant ggml_metal_kargs_pad_reflect_1d & args,
uint3 tgpig[[threadgroup_position_in_grid]],
uint3 tgpg[[threadgroups_per_grid]],
uint3 tpitg[[thread_position_in_threadgroup]],
}
kernel void kernel_arange_f32(
- device char * dst,
constant ggml_metal_kargs_arange & args,
+ device char * dst,
uint3 tgpig[[threadgroup_position_in_grid]],
uint3 tpitg[[thread_position_in_threadgroup]],
uint3 ntg[[threads_per_threadgroup]]) {
}
kernel void kernel_timestep_embedding_f32(
+ constant ggml_metal_kargs_timestep_embedding & args,
device const char * src0,
device char * dst,
- constant ggml_metal_kargs_timestep_embedding & args,
uint3 tgpig[[threadgroup_position_in_grid]],
uint3 tpitg[[thread_position_in_threadgroup]],
uint3 ntg[[threads_per_threadgroup]]) {
// bitonic sort implementation following the CUDA kernels as reference
typedef void (argsort_t)(
- device const float * x,
- device int32_t * dst,
constant ggml_metal_kargs_argsort & args,
+ device const float * x,
+ device int32_t * dst,
threadgroup int32_t * shared_values [[threadgroup(0)]],
uint3 tgpig[[threadgroup_position_in_grid]],
uint3 tpitg[[thread_position_in_threadgroup]]);
template<ggml_sort_order order>
kernel void kernel_argsort_f32_i32(
- device const float * x,
- device int32_t * dst,
constant ggml_metal_kargs_argsort & args,
- threadgroup int32_t * shared_values [[threadgroup(0)]],
+ device const float * x,
+ device int32_t * dst,
+ threadgroup int32_t * shared_values [[threadgroup(0)]],
uint3 tgpig[[threadgroup_position_in_grid]],
uint3 tpitg[[thread_position_in_threadgroup]]) {
// bitonic sort
template [[host_name("kernel_argsort_f32_i32_desc")]] kernel argsort_t kernel_argsort_f32_i32<GGML_SORT_ORDER_DESC>;
kernel void kernel_leaky_relu_f32(
+ constant ggml_metal_kargs_leaky_relu & args,
device const float * src0,
device float * dst,
+ uint tpig[[thread_position_in_grid]]) {
+ const float x = src0[tpig];
+ dst[tpig] = x > 0.0f ? x : x * args.slope;
+}
+
+kernel void kernel_leaky_relu_f32_4(
constant ggml_metal_kargs_leaky_relu & args,
+ device const float4 * src0,
+ device float4 * dst,
uint tpig[[thread_position_in_grid]]) {
- dst[tpig] = src0[tpig] > 0.0f ? src0[tpig] : src0[tpig] * args.slope;
+ const float4 x = src0[tpig];
+ dst[tpig] = float4(x > 0.0f)*x + float4(x <= 0.0f)*(x * args.slope);
}
constant bool FC_flash_attn_ext_has_mask [[function_constant(FC_FLASH_ATTN_EXT + 0)]];
template [[host_name("kernel_flash_attn_ext_f16_dk256_dv256")]] kernel flash_attn_ext_t kernel_flash_attn_ext<FA_TYPES, half4x4, 1, dequantize_f16, half4x4, 1, dequantize_f16, 256, 256>;
template [[host_name("kernel_flash_attn_ext_f16_dk576_dv512")]] kernel flash_attn_ext_t kernel_flash_attn_ext<FA_TYPES, half4x4, 1, dequantize_f16, half4x4, 1, dequantize_f16, 576, 512>;
-#if defined(GGML_METAL_USE_BF16)
+#if defined(GGML_METAL_HAS_BF16)
template [[host_name("kernel_flash_attn_ext_bf16_dk40_dv40" )]] kernel flash_attn_ext_t kernel_flash_attn_ext<FA_TYPES_BF, bfloat4x4, 1, dequantize_bf16, bfloat4x4, 1, dequantize_bf16, 40, 40>;
template [[host_name("kernel_flash_attn_ext_bf16_dk64_dv64" )]] kernel flash_attn_ext_t kernel_flash_attn_ext<FA_TYPES_BF, bfloat4x4, 1, dequantize_bf16, bfloat4x4, 1, dequantize_bf16, 64, 64>;
template [[host_name("kernel_flash_attn_ext_bf16_dk80_dv80" )]] kernel flash_attn_ext_t kernel_flash_attn_ext<FA_TYPES_BF, bfloat4x4, 1, dequantize_bf16, bfloat4x4, 1, dequantize_bf16, 80, 80>;
typedef decltype(kernel_flash_attn_ext_vec<FA_TYPES, half4, 1, dequantize_f16_t4, half4, 1, dequantize_f16_t4, 128, 128, 4>) flash_attn_ext_vec_t;
template [[host_name("kernel_flash_attn_ext_vec_f16_dk64_dv64")]] kernel flash_attn_ext_vec_t kernel_flash_attn_ext_vec<FA_TYPES, half4, 1, dequantize_f16_t4, half4, 1, dequantize_f16_t4, 64, 64, 2>;
-#if defined(GGML_METAL_USE_BF16)
+#if defined(GGML_METAL_HAS_BF16)
template [[host_name("kernel_flash_attn_ext_vec_bf16_dk64_dv64")]] kernel flash_attn_ext_vec_t kernel_flash_attn_ext_vec<FA_TYPES, bfloat4, 1, dequantize_bf16_t4, bfloat4, 1, dequantize_bf16_t4, 64, 64, 2>;
#endif
template [[host_name("kernel_flash_attn_ext_vec_q4_0_dk64_dv64")]] kernel flash_attn_ext_vec_t kernel_flash_attn_ext_vec<FA_TYPES, block_q4_0, 8, dequantize_q4_0_t4, block_q4_0, 8, dequantize_q4_0_t4, 64, 64, 2>;
template [[host_name("kernel_flash_attn_ext_vec_q8_0_dk64_dv64")]] kernel flash_attn_ext_vec_t kernel_flash_attn_ext_vec<FA_TYPES, block_q8_0, 8, dequantize_q8_0_t4, block_q8_0, 8, dequantize_q8_0_t4, 64, 64, 2>;
template [[host_name("kernel_flash_attn_ext_vec_f16_dk96_dv96")]] kernel flash_attn_ext_vec_t kernel_flash_attn_ext_vec<FA_TYPES, half4, 1, dequantize_f16_t4, half4, 1, dequantize_f16_t4, 96, 96, 4>;
-#if defined(GGML_METAL_USE_BF16)
+#if defined(GGML_METAL_HAS_BF16)
template [[host_name("kernel_flash_attn_ext_vec_bf16_dk96_dv96")]] kernel flash_attn_ext_vec_t kernel_flash_attn_ext_vec<FA_TYPES, bfloat4, 1, dequantize_bf16_t4, bfloat4, 1, dequantize_bf16_t4, 96, 96, 4>;
#endif
template [[host_name("kernel_flash_attn_ext_vec_q4_0_dk96_dv96")]] kernel flash_attn_ext_vec_t kernel_flash_attn_ext_vec<FA_TYPES, block_q4_0, 8, dequantize_q4_0_t4, block_q4_0, 8, dequantize_q4_0_t4, 96, 96, 4>;
template [[host_name("kernel_flash_attn_ext_vec_q8_0_dk96_dv96")]] kernel flash_attn_ext_vec_t kernel_flash_attn_ext_vec<FA_TYPES, block_q8_0, 8, dequantize_q8_0_t4, block_q8_0, 8, dequantize_q8_0_t4, 96, 96, 4>;
template [[host_name("kernel_flash_attn_ext_vec_f16_dk128_dv128")]] kernel flash_attn_ext_vec_t kernel_flash_attn_ext_vec<FA_TYPES, half4, 1, dequantize_f16_t4, half4, 1, dequantize_f16_t4, 128, 128, 1>;
-#if defined(GGML_METAL_USE_BF16)
+#if defined(GGML_METAL_HAS_BF16)
template [[host_name("kernel_flash_attn_ext_vec_bf16_dk128_dv128")]] kernel flash_attn_ext_vec_t kernel_flash_attn_ext_vec<FA_TYPES, bfloat4, 1, dequantize_bf16_t4, bfloat4, 1, dequantize_bf16_t4, 128, 128, 1>;
#endif
template [[host_name("kernel_flash_attn_ext_vec_q4_0_dk128_dv128")]] kernel flash_attn_ext_vec_t kernel_flash_attn_ext_vec<FA_TYPES, block_q4_0, 8, dequantize_q4_0_t4, block_q4_0, 8, dequantize_q4_0_t4, 128, 128, 1>;
template [[host_name("kernel_flash_attn_ext_vec_q8_0_dk128_dv128")]] kernel flash_attn_ext_vec_t kernel_flash_attn_ext_vec<FA_TYPES, block_q8_0, 8, dequantize_q8_0_t4, block_q8_0, 8, dequantize_q8_0_t4, 128, 128, 1>;
template [[host_name("kernel_flash_attn_ext_vec_f16_dk192_dv192")]] kernel flash_attn_ext_vec_t kernel_flash_attn_ext_vec<FA_TYPES, half4, 1, dequantize_f16_t4, half4, 1, dequantize_f16_t4, 192, 192, 2>;
-#if defined(GGML_METAL_USE_BF16)
+#if defined(GGML_METAL_HAS_BF16)
template [[host_name("kernel_flash_attn_ext_vec_bf16_dk192_dv192")]] kernel flash_attn_ext_vec_t kernel_flash_attn_ext_vec<FA_TYPES, bfloat4, 1, dequantize_bf16_t4, bfloat4, 1, dequantize_bf16_t4, 192, 192, 2>;
#endif
template [[host_name("kernel_flash_attn_ext_vec_q4_0_dk192_dv192")]] kernel flash_attn_ext_vec_t kernel_flash_attn_ext_vec<FA_TYPES, block_q4_0, 8, dequantize_q4_0_t4, block_q4_0, 8, dequantize_q4_0_t4, 192, 192, 2>;
template [[host_name("kernel_flash_attn_ext_vec_q8_0_dk192_dv192")]] kernel flash_attn_ext_vec_t kernel_flash_attn_ext_vec<FA_TYPES, block_q8_0, 8, dequantize_q8_0_t4, block_q8_0, 8, dequantize_q8_0_t4, 192, 192, 2>;
template [[host_name("kernel_flash_attn_ext_vec_f16_dk192_dv128")]] kernel flash_attn_ext_vec_t kernel_flash_attn_ext_vec<FA_TYPES, half4, 1, dequantize_f16_t4, half4, 1, dequantize_f16_t4, 192, 128, 2>;
-#if defined(GGML_METAL_USE_BF16)
+#if defined(GGML_METAL_HAS_BF16)
template [[host_name("kernel_flash_attn_ext_vec_bf16_dk192_dv128")]] kernel flash_attn_ext_vec_t kernel_flash_attn_ext_vec<FA_TYPES, bfloat4, 1, dequantize_bf16_t4, bfloat4, 1, dequantize_bf16_t4, 192, 128, 2>;
#endif
template [[host_name("kernel_flash_attn_ext_vec_q4_0_dk192_dv128")]] kernel flash_attn_ext_vec_t kernel_flash_attn_ext_vec<FA_TYPES, block_q4_0, 8, dequantize_q4_0_t4, block_q4_0, 8, dequantize_q4_0_t4, 192, 128, 2>;
template [[host_name("kernel_flash_attn_ext_vec_q8_0_dk192_dv128")]] kernel flash_attn_ext_vec_t kernel_flash_attn_ext_vec<FA_TYPES, block_q8_0, 8, dequantize_q8_0_t4, block_q8_0, 8, dequantize_q8_0_t4, 192, 128, 2>;
template [[host_name("kernel_flash_attn_ext_vec_f16_dk256_dv256")]] kernel flash_attn_ext_vec_t kernel_flash_attn_ext_vec<FA_TYPES, half4, 1, dequantize_f16_t4, half4, 1, dequantize_f16_t4, 256, 256, 1>;
-#if defined(GGML_METAL_USE_BF16)
+#if defined(GGML_METAL_HAS_BF16)
template [[host_name("kernel_flash_attn_ext_vec_bf16_dk256_dv256")]] kernel flash_attn_ext_vec_t kernel_flash_attn_ext_vec<FA_TYPES, bfloat4, 1, dequantize_bf16_t4, bfloat4, 1, dequantize_bf16_t4, 256, 256, 1>;
#endif
template [[host_name("kernel_flash_attn_ext_vec_q4_0_dk256_dv256")]] kernel flash_attn_ext_vec_t kernel_flash_attn_ext_vec<FA_TYPES, block_q4_0, 8, dequantize_q4_0_t4, block_q4_0, 8, dequantize_q4_0_t4, 256, 256, 1>;
template [[host_name("kernel_flash_attn_ext_vec_q8_0_dk256_dv256")]] kernel flash_attn_ext_vec_t kernel_flash_attn_ext_vec<FA_TYPES, block_q8_0, 8, dequantize_q8_0_t4, block_q8_0, 8, dequantize_q8_0_t4, 256, 256, 1>;
template [[host_name("kernel_flash_attn_ext_vec_f16_dk576_dv512")]] kernel flash_attn_ext_vec_t kernel_flash_attn_ext_vec<FA_TYPES, half4, 1, dequantize_f16_t4, half4, 1, dequantize_f16_t4, 576, 512, 2>;
-#if defined(GGML_METAL_USE_BF16)
+#if defined(GGML_METAL_HAS_BF16)
template [[host_name("kernel_flash_attn_ext_vec_bf16_dk576_dv512")]] kernel flash_attn_ext_vec_t kernel_flash_attn_ext_vec<FA_TYPES, bfloat4, 1, dequantize_bf16_t4, bfloat4, 1, dequantize_bf16_t4, 576, 512, 2>;
#endif
template [[host_name("kernel_flash_attn_ext_vec_q4_0_dk576_dv512")]] kernel flash_attn_ext_vec_t kernel_flash_attn_ext_vec<FA_TYPES, block_q4_0, 8, dequantize_q4_0_t4, block_q4_0, 8, dequantize_q4_0_t4, 576, 512, 2>;
template [[host_name("kernel_cpy_f32_f16")]] kernel kernel_cpy_t kernel_cpy<float, half>;
template [[host_name("kernel_cpy_f32_i32")]] kernel kernel_cpy_t kernel_cpy<float, int32_t>;
template [[host_name("kernel_cpy_i32_f32")]] kernel kernel_cpy_t kernel_cpy<int32_t, float>;
-#if defined(GGML_METAL_USE_BF16)
+#if defined(GGML_METAL_HAS_BF16)
template [[host_name("kernel_cpy_f32_bf16")]] kernel kernel_cpy_t kernel_cpy<float, bfloat>;
#endif
template [[host_name("kernel_cpy_f16_f32")]] kernel kernel_cpy_t kernel_cpy<half, float>;
template [[host_name("kernel_cpy_f16_f16")]] kernel kernel_cpy_t kernel_cpy<half, half>;
-#if defined(GGML_METAL_USE_BF16)
+#if defined(GGML_METAL_HAS_BF16)
template [[host_name("kernel_cpy_bf16_f32")]] kernel kernel_cpy_t kernel_cpy<bfloat, float>;
template [[host_name("kernel_cpy_bf16_bf16")]] kernel kernel_cpy_t kernel_cpy<bfloat, bfloat>;
#endif
typedef decltype(kernel_mul_mm_id_map0<1>) kernel_mul_mm_id_map0_t;
-template [[host_name("kernel_mul_mm_id_map0_f16_ne20_1" )]] kernel kernel_mul_mm_id_map0_t kernel_mul_mm_id_map0<1>;
-template [[host_name("kernel_mul_mm_id_map0_f16_ne20_2" )]] kernel kernel_mul_mm_id_map0_t kernel_mul_mm_id_map0<2>;
-template [[host_name("kernel_mul_mm_id_map0_f16_ne20_4" )]] kernel kernel_mul_mm_id_map0_t kernel_mul_mm_id_map0<4>;
-template [[host_name("kernel_mul_mm_id_map0_f16_ne20_6" )]] kernel kernel_mul_mm_id_map0_t kernel_mul_mm_id_map0<6>;
-template [[host_name("kernel_mul_mm_id_map0_f16_ne20_8" )]] kernel kernel_mul_mm_id_map0_t kernel_mul_mm_id_map0<8>;
-template [[host_name("kernel_mul_mm_id_map0_f16_ne20_10")]] kernel kernel_mul_mm_id_map0_t kernel_mul_mm_id_map0<10>;
-template [[host_name("kernel_mul_mm_id_map0_f16_ne20_16")]] kernel kernel_mul_mm_id_map0_t kernel_mul_mm_id_map0<16>;
+template [[host_name("kernel_mul_mm_id_map0_ne20_1" )]] kernel kernel_mul_mm_id_map0_t kernel_mul_mm_id_map0<1>;
+template [[host_name("kernel_mul_mm_id_map0_ne20_2" )]] kernel kernel_mul_mm_id_map0_t kernel_mul_mm_id_map0<2>;
+template [[host_name("kernel_mul_mm_id_map0_ne20_4" )]] kernel kernel_mul_mm_id_map0_t kernel_mul_mm_id_map0<4>;
+template [[host_name("kernel_mul_mm_id_map0_ne20_6" )]] kernel kernel_mul_mm_id_map0_t kernel_mul_mm_id_map0<6>;
+template [[host_name("kernel_mul_mm_id_map0_ne20_8" )]] kernel kernel_mul_mm_id_map0_t kernel_mul_mm_id_map0<8>;
+template [[host_name("kernel_mul_mm_id_map0_ne20_10")]] kernel kernel_mul_mm_id_map0_t kernel_mul_mm_id_map0<10>;
+template [[host_name("kernel_mul_mm_id_map0_ne20_16")]] kernel kernel_mul_mm_id_map0_t kernel_mul_mm_id_map0<16>;
template<typename T, typename T4x4, typename simdgroup_T8x8, typename block_q, short nl, void (*dequantize_func)(device const block_q *, short, thread T4x4 &)>
kernel void kernel_mul_mm_id(
template [[host_name("kernel_get_rows_f32")]] kernel get_rows_f_t kernel_get_rows_f<float>;
template [[host_name("kernel_get_rows_f16")]] kernel get_rows_f_t kernel_get_rows_f<half>;
-#if defined(GGML_METAL_USE_BF16)
+#if defined(GGML_METAL_HAS_BF16)
template [[host_name("kernel_get_rows_bf16")]] kernel get_rows_f_t kernel_get_rows_f<bfloat>;
#endif
template [[host_name("kernel_set_rows_f32")]] kernel set_rows_f_t kernel_set_rows_f<float>;
template [[host_name("kernel_set_rows_f16")]] kernel set_rows_f_t kernel_set_rows_f<half>;
-#if defined(GGML_METAL_USE_BF16)
+#if defined(GGML_METAL_HAS_BF16)
template [[host_name("kernel_set_rows_bf16")]] kernel set_rows_f_t kernel_set_rows_f<bfloat>;
#endif
template [[host_name("kernel_mul_mm_f32_f32")]] kernel mul_mm_t kernel_mul_mm<half, half4x4, simdgroup_half8x8, float4x4, 1, dequantize_f32>;
template [[host_name("kernel_mul_mm_f16_f32")]] kernel mul_mm_t kernel_mul_mm<half, half4x4, simdgroup_half8x8, half4x4, 1, dequantize_f16>;
-#if defined(GGML_METAL_USE_BF16)
+#if defined(GGML_METAL_HAS_BF16)
template [[host_name("kernel_mul_mm_bf16_f32")]] kernel mul_mm_t kernel_mul_mm<bfloat, bfloat4x4, simdgroup_bfloat8x8, bfloat4x4, 1, dequantize_bf16>;
#endif
template [[host_name("kernel_mul_mm_q4_0_f32")]] kernel mul_mm_t kernel_mul_mm<half, half4x4, simdgroup_half8x8, block_q4_0, 2, dequantize_q4_0>;
template [[host_name("kernel_mul_mm_id_f32_f16")]] kernel mul_mm_id kernel_mul_mm_id<half, half4x4, simdgroup_half8x8, float4x4, 1, dequantize_f32>;
template [[host_name("kernel_mul_mm_id_f16_f16")]] kernel mul_mm_id kernel_mul_mm_id<half, half4x4, simdgroup_half8x8, half4x4, 1, dequantize_f16>;
-#if defined(GGML_METAL_USE_BF16)
+#if defined(GGML_METAL_HAS_BF16)
template [[host_name("kernel_mul_mm_id_bf16_f16")]] kernel mul_mm_id kernel_mul_mm_id<bfloat, bfloat4x4, simdgroup_bfloat8x8, bfloat4x4, 1, dequantize_bf16>;
#endif
template [[host_name("kernel_mul_mm_id_q4_0_f16")]] kernel mul_mm_id kernel_mul_mm_id<half, half4x4, simdgroup_half8x8, block_q4_0, 2, dequantize_q4_0>;
template [[host_name("kernel_mul_mv_id_f32_f32")]] kernel kernel_mul_mv_id_t kernel_mul_mv_id<mmv_fn<kernel_mul_mv_impl<float, float4, float, float4>>>;
template [[host_name("kernel_mul_mv_id_f16_f32")]] kernel kernel_mul_mv_id_t kernel_mul_mv_id<mmv_fn<kernel_mul_mv_impl<half, half4, float, float4>>>;
-#if defined(GGML_METAL_USE_BF16)
+#if defined(GGML_METAL_HAS_BF16)
template [[host_name("kernel_mul_mv_id_bf16_f32")]] kernel kernel_mul_mv_id_t kernel_mul_mv_id<mmv_fn<kernel_mul_mv_impl<bfloat, bfloat4, float, float4>>>;
#endif
template [[host_name("kernel_mul_mv_id_q8_0_f32")]] kernel kernel_mul_mv_id_t kernel_mul_mv_id<mmv_fn<kernel_mul_mv_q8_0_f32_impl<N_R0_Q8_0, N_SG_Q8_0, N_SIMDWIDTH>>>;
template [[host_name("kernel_mul_mv_id_iq4_xs_f32")]] kernel kernel_mul_mv_id_t kernel_mul_mv_id<mmv_fn<kernel_mul_mv_iq4_xs_f32_impl <N_R0_IQ4_XS, N_SG_IQ4_XS, N_SIMDWIDTH>>>;
kernel void kernel_pool_2d_max_f32(
+ constant ggml_metal_kargs_pool_2d & args,
device const float * src0,
device float * dst,
- constant ggml_metal_kargs_pool_2d & args,
uint gid[[thread_position_in_grid]]) {
- if (gid >= args.parallel_elements) {
+ if (gid >= args.np) {
return;
}
}
kernel void kernel_pool_2d_avg_f32(
+ constant ggml_metal_kargs_pool_2d & args,
device const float * src0,
device float * dst,
- constant ggml_metal_kargs_pool_2d & args,
uint gid[[thread_position_in_grid]]) {
- if (gid >= args.parallel_elements) {
+ if (gid >= args.np) {
return;
}
}
for (ggml_type type : {GGML_TYPE_F16, GGML_TYPE_F32}) {
- test_cases.emplace_back(new test_sqr(type));
- test_cases.emplace_back(new test_sqrt(type));
- test_cases.emplace_back(new test_log(type));
- test_cases.emplace_back(new test_sin(type));
- test_cases.emplace_back(new test_cos(type));
- test_cases.emplace_back(new test_clamp(type));
+ test_cases.emplace_back(new test_sqr (type));
+ test_cases.emplace_back(new test_sqrt (type));
+ test_cases.emplace_back(new test_log (type));
+ test_cases.emplace_back(new test_sin (type));
+ test_cases.emplace_back(new test_cos (type));
+ test_cases.emplace_back(new test_clamp (type));
+ test_cases.emplace_back(new test_leaky_relu(type));
+ test_cases.emplace_back(new test_sqr (type, {7, 1, 5, 3}));
+ test_cases.emplace_back(new test_sqrt (type, {7, 1, 5, 3}));
+ test_cases.emplace_back(new test_log (type, {7, 1, 5, 3}));
+ test_cases.emplace_back(new test_sin (type, {7, 1, 5, 3}));
+ test_cases.emplace_back(new test_cos (type, {7, 1, 5, 3}));
+ test_cases.emplace_back(new test_clamp (type, {7, 1, 5, 3}));
+ test_cases.emplace_back(new test_leaky_relu(type, {7, 1, 5, 3}));
}
test_cases.emplace_back(new test_diag_mask_inf(GGML_TYPE_F32, {10, 10, 1, 1}, 5));