]> git.djapps.eu Git - pkg/ggml/sources/llama.cpp/commitdiff
chore: Remove rebase artifacts
authorditsuke <redacted>
Tue, 2 Jul 2024 10:18:13 +0000 (15:48 +0530)
committerSomeone <redacted>
Thu, 4 Jul 2024 15:39:13 +0000 (15:39 +0000)
convert_hf_to_gguf_update.py [changed mode: 0644->0755]
convert_lora_to_ggml.py [deleted file]
convert_persimmon_to_gguf.py [deleted file]
pyproject.toml
requirements.txt
requirements/requirements-convert_lora_to_ggml.txt [deleted file]
requirements/requirements-convert_persimmon_to_gguf.txt [deleted file]

old mode 100644 (file)
new mode 100755 (executable)
index ca337af..21a3062
@@ -50,7 +50,7 @@ class TOKENIZER_TYPE(IntEnum):
 
 # TODO: this string has to exercise as much pre-tokenizer functionality as possible
 #       will be updated with time - contributions welcome
-chktxt = "\n \n\n \n\n\n \t \t\t \t\n  \n   \n    \n     \n🚀 (normal) 😶‍🌫️ (multiple emojis concatenated) ✅ 🦙🦙 3 33 333 3333 33333 333333 3333333 33333333 3.3 3..3 3...3 កាន់តែពិសេសអាច😁 ?我想在apple工作1314151天~ ------======= нещо на Български ''''''```````\"\"\"\"......!!!!!!?????? I've been 'told he's there, 'RE you sure? 'M not sure I'll make it, 'D you like some tea? We'Ve a'lL"
+chktxt = '\n \n\n \n\n\n \t \t\t \t\n  \n   \n    \n     \n🚀 (normal) 😶‍🌫️ (multiple emojis concatenated) ✅ 🦙🦙 3 33 333 3333 33333 333333 3333333 33333333 3.3 3..3 3...3 កាន់តែពិសេសអាច😁 ?我想在apple工作1314151天~ ------======= нещо на Български \'\'\'\'\'\'```````\"\"\"\"......!!!!!!?????? I\'ve been \'told he\'s there, \'RE you sure? \'M not sure I\'ll make it, \'D you like some tea? We\'Ve a\'lL'
 
 if len(sys.argv) == 2:
     token = sys.argv[1]
@@ -99,7 +99,7 @@ def download_file_with_auth(url, token, save_path):
     response = sess.get(url, headers=headers)
     response.raise_for_status()
     os.makedirs(os.path.dirname(save_path), exist_ok=True)
-    with open(save_path, "wb") as f:
+    with open(save_path, 'wb') as f:
         f.write(response.content)
     logger.info(f"File {save_path} downloaded successfully")
 
@@ -156,9 +156,7 @@ for model in models:
         else:
             tokenizer = AutoTokenizer.from_pretrained(f"models/tokenizers/{name}")
     except OSError as e:
-        logger.error(
-            f"Error loading tokenizer for model {name}. The model may not exist or is not accessible with the provided token. Error: {e}"
-        )
+        logger.error(f"Error loading tokenizer for model {name}. The model may not exist or is not accessible with the provided token. Error: {e}")
         continue  # Skip to the next model if the tokenizer can't be loaded
 
     chktok = tokenizer.encode(chktxt)
@@ -178,15 +176,13 @@ for model in models:
         pre_tokenizer = cfg["pre_tokenizer"]
         logger.info("pre_tokenizer: " + json.dumps(pre_tokenizer, indent=4))
         if "ignore_merges" in cfg["model"]:
-            logger.info(
-                "ignore_merges: " + json.dumps(cfg["model"]["ignore_merges"], indent=4)
-            )
+            logger.info("ignore_merges: " + json.dumps(cfg["model"]["ignore_merges"], indent=4))
 
     logger.info("")
 
-    src_ifs += f'        if chkhsh == "{chkhsh}":\n'
+    src_ifs += f"        if chkhsh == \"{chkhsh}\":\n"
     src_ifs += f"            # ref: {model['repo']}\n"
-    src_ifs += f'            res = "{name}"\n'
+    src_ifs += f"            res = \"{name}\"\n"
 
 src_func = f"""
     def get_vocab_base_pre(self, tokenizer) -> str:
@@ -347,8 +343,6 @@ logger.info("\nRun the following commands to generate the vocab files for testin
 for model in models:
     name = model["name"]
 
-    print(
-        f"python3 convert-hf-to-gguf.py models/tokenizers/{name}/ --outfile models/ggml-vocab-{name}.gguf --vocab-only"
-    )  # noqa: NP100
+    print(f"python3 convert-hf-to-gguf.py models/tokenizers/{name}/ --outfile models/ggml-vocab-{name}.gguf --vocab-only") # noqa: NP100
 
 logger.info("\n")
diff --git a/convert_lora_to_ggml.py b/convert_lora_to_ggml.py
deleted file mode 100755 (executable)
index 276d0d6..0000000
+++ /dev/null
@@ -1,149 +0,0 @@
-#!/usr/bin/env python3
-from __future__ import annotations
-
-import json
-import os
-import struct
-import sys
-from pathlib import Path
-from typing import Any, BinaryIO, Sequence
-
-import numpy as np
-import torch
-
-if 'NO_LOCAL_GGUF' not in os.environ:
-    sys.path.insert(1, str(Path(__file__).parent / 'gguf-py' / 'gguf'))
-import gguf
-
-NUMPY_TYPE_TO_FTYPE: dict[str, int] = {"float32": 0, "float16": 1}
-
-
-def write_file_header(fout: BinaryIO, params: dict[str, Any]) -> None:
-    fout.write(b"ggla"[::-1])  # magic (ggml lora)
-    fout.write(struct.pack("i", 1))  # file version
-    fout.write(struct.pack("i", params["r"]))
-    # https://opendelta.readthedocs.io/en/latest/modules/deltas.html says that `lora_alpha` is an int
-    # but some models ship a float value instead
-    # let's convert to int, but fail if lossless conversion is not possible
-    assert (
-        int(params["lora_alpha"]) == params["lora_alpha"]
-    ), "cannot convert float to int losslessly"
-    fout.write(struct.pack("i", int(params["lora_alpha"])))
-
-
-def write_tensor_header(fout: BinaryIO, name: str, shape: Sequence[int], data_type: np.dtype[Any]) -> None:
-    sname = name.encode("utf-8")
-    fout.write(
-        struct.pack(
-            "iii",
-            len(shape),
-            len(sname),
-            NUMPY_TYPE_TO_FTYPE[data_type.name],
-        )
-    )
-    fout.write(struct.pack("i" * len(shape), *shape[::-1]))
-    fout.write(sname)
-    fout.seek((fout.tell() + 31) & -32)
-
-
-if __name__ == '__main__':
-    if len(sys.argv) < 2:
-        print(f"Usage: python {sys.argv[0]} <path> [arch]")
-        print(
-            "Path must contain HuggingFace PEFT LoRA files 'adapter_config.json' and 'adapter_model.bin'"
-        )
-        print(f"Arch must be one of {list(gguf.MODEL_ARCH_NAMES.values())} (default: llama)")
-        sys.exit(1)
-
-    input_json = os.path.join(sys.argv[1], "adapter_config.json")
-    input_model = os.path.join(sys.argv[1], "adapter_model.bin")
-    output_path = os.path.join(sys.argv[1], "ggml-adapter-model.bin")
-
-    if os.path.exists(input_model):
-        model = torch.load(input_model, map_location="cpu")
-    else:
-        input_model = os.path.join(sys.argv[1], "adapter_model.safetensors")
-        # lazy import load_file only if lora is in safetensors format.
-        from safetensors.torch import load_file
-        model = load_file(input_model, device="cpu")
-
-    arch_name = sys.argv[2] if len(sys.argv) == 3 else "llama"
-
-    if arch_name not in gguf.MODEL_ARCH_NAMES.values():
-        print(f"Error: unsupported architecture {arch_name}")
-        sys.exit(1)
-
-    arch = list(gguf.MODEL_ARCH_NAMES.keys())[list(gguf.MODEL_ARCH_NAMES.values()).index(arch_name)]
-    name_map = gguf.TensorNameMap(arch, 200) # 200 layers ought to be enough for anyone
-
-    with open(input_json, "r") as f:
-        params = json.load(f)
-
-    if params["peft_type"] != "LORA":
-        print(f"Error: unsupported adapter type {params['peft_type']}, expected LORA")
-        sys.exit(1)
-
-    if params["fan_in_fan_out"] is True:
-        print("Error: param fan_in_fan_out is not supported")
-        sys.exit(1)
-
-    if params["bias"] is not None and params["bias"] != "none":
-        print("Error: param bias is not supported")
-        sys.exit(1)
-
-    # TODO: these seem to be layers that have been trained but without lora.
-    # doesn't seem widely used but eventually should be supported
-    if params["modules_to_save"] is not None and len(params["modules_to_save"]) > 0:
-        print("Error: param modules_to_save is not supported")
-        sys.exit(1)
-
-    with open(output_path, "wb") as fout:
-        fout.truncate()
-
-        write_file_header(fout, params)
-        for k, v in model.items():
-            orig_k = k
-            if k.endswith(".default.weight"):
-                k = k.replace(".default.weight", ".weight")
-            if k in ["llama_proj.weight", "llama_proj.bias"]:
-                continue
-            if k.endswith("lora_A.weight"):
-                if v.dtype != torch.float16 and v.dtype != torch.float32:
-                    v = v.float()
-                v = v.T
-            else:
-                v = v.float()
-
-            t = v.detach().numpy()
-
-            prefix = "base_model.model."
-            if k.startswith(prefix):
-                k = k[len(prefix) :]
-
-            lora_suffixes = (".lora_A.weight", ".lora_B.weight")
-            if k.endswith(lora_suffixes):
-                suffix = k[-len(lora_suffixes[0]):]
-                k = k[: -len(lora_suffixes[0])]
-            else:
-                print(f"Error: unrecognized tensor name {orig_k}")
-                sys.exit(1)
-
-            tname = name_map.get_name(k)
-            if tname is None:
-                print(f"Error: could not map tensor name {orig_k}")
-                print(" Note: the arch parameter must be specified if the model is not llama")
-                sys.exit(1)
-
-            if suffix == ".lora_A.weight":
-                tname += ".weight.loraA"
-            elif suffix == ".lora_B.weight":
-                tname += ".weight.loraB"
-            else:
-                assert False
-
-            print(f"{k} => {tname} {t.shape} {t.dtype} {t.nbytes/1024/1024:.2f}MB")
-            write_tensor_header(fout, tname, t.shape, t.dtype)
-            t.tofile(fout)
-
-    print(f"Converted {input_json} and {input_model} to {output_path}")
-
diff --git a/convert_persimmon_to_gguf.py b/convert_persimmon_to_gguf.py
deleted file mode 100755 (executable)
index e1fe3c5..0000000
+++ /dev/null
@@ -1,137 +0,0 @@
-#!/usr/bin/env python3
-import argparse
-import os
-import sys
-from pathlib import Path
-from pprint import pprint
-
-import torch
-from sentencepiece import SentencePieceProcessor
-
-if 'NO_LOCAL_GGUF' not in os.environ:
-    sys.path.insert(1, str(Path(__file__).parent / 'gguf-py'))
-import gguf
-
-
-def _flatten_dict(dct, tensors, prefix=None):
-    assert isinstance(dct, dict)
-    for key in dct.keys():
-        new_prefix = prefix + '.' + key if prefix is not None else key
-        if isinstance(dct[key], torch.Tensor):
-            tensors[new_prefix] = dct[key]
-        elif isinstance(dct[key], dict):
-            _flatten_dict(dct[key], tensors, new_prefix)
-        else:
-            raise ValueError(type(dct[key]))
-    return None
-
-
-def _get_sentencepiece_tokenizer_info(dir_model: Path):
-    tokenizer_path = dir_model / 'adept_vocab.model'
-    print('gguf: getting sentencepiece tokenizer from', tokenizer_path)
-    tokenizer = SentencePieceProcessor(str(tokenizer_path))
-    print('gguf: adding tokens')
-    tokens: list[bytes] = []
-    scores: list[float] = []
-    toktypes: list[int] = []
-
-    for i in range(tokenizer.vocab_size()):
-        text: bytes
-        score: float
-
-        piece = tokenizer.id_to_piece(i)
-        text = piece.encode("utf-8")
-        score = tokenizer.get_score(i)
-
-        toktype = 1
-        if tokenizer.is_unknown(i):
-            toktype = 2
-        if tokenizer.is_control(i):
-            toktype = 3
-        if tokenizer.is_unused(i):
-            toktype = 5
-        if tokenizer.is_byte(i):
-            toktype = 6
-
-        tokens.append(text)
-        scores.append(score)
-        toktypes.append(toktype)
-        pass
-    return tokens, scores, toktypes
-
-
-def main():
-    parser = argparse.ArgumentParser(description="Convert a Persimmon model from Adept (e.g. Persimmon 8b chat) to a GGML compatible file")
-    parser.add_argument("--outfile",             type=Path, help="path to write to; default: based on input")
-    parser.add_argument("--ckpt-path",           type=Path, help="path to persimmon checkpoint .pt file")
-    parser.add_argument("--model-dir",           type=Path, help="directory containing model e.g. 8b_chat_model_release")
-    parser.add_argument("--adept-inference-dir", type=str, help="path to adept-inference code directory")
-    args = parser.parse_args()
-    sys.path.append(str(args.adept_inference_dir))
-    persimmon_model = torch.load(args.ckpt_path)
-    hparams = persimmon_model['args']
-    pprint(hparams)
-    tensors: dict[str, torch.Tensor] = {}
-    _flatten_dict(persimmon_model['model'], tensors, None)
-
-    arch = gguf.MODEL_ARCH.PERSIMMON
-    gguf_writer = gguf.GGUFWriter(args.outfile, gguf.MODEL_ARCH_NAMES[arch])
-
-    block_count = hparams.num_layers
-    head_count = hparams.num_attention_heads
-    head_count_kv = head_count
-    ctx_length = hparams.seq_length
-    hidden_size = hparams.hidden_size
-
-    gguf_writer.add_name('persimmon-8b-chat')
-    gguf_writer.add_context_length(ctx_length)
-    gguf_writer.add_embedding_length(hidden_size)
-    gguf_writer.add_block_count(block_count)
-    gguf_writer.add_feed_forward_length(hparams.ffn_hidden_size)
-    # ref: https://github.com/ggerganov/llama.cpp/pull/4889/commits/eea19039fc52ea2dbd1aab45b59ab4e3e29a3443
-    gguf_writer.add_rope_dimension_count(hidden_size // head_count // 2)
-    gguf_writer.add_head_count(head_count)
-    gguf_writer.add_head_count_kv(head_count_kv)
-    gguf_writer.add_rope_freq_base(hparams.rotary_emb_base)
-    gguf_writer.add_layer_norm_eps(hparams.layernorm_epsilon)
-
-    tokens, scores, toktypes = _get_sentencepiece_tokenizer_info(args.model_dir)
-    gguf_writer.add_tokenizer_model('llama')
-    gguf_writer.add_token_list(tokens)
-    gguf_writer.add_token_scores(scores)
-    gguf_writer.add_token_types(toktypes)
-    gguf_writer.add_bos_token_id(71013)
-    gguf_writer.add_eos_token_id(71013)
-
-    tensor_map = gguf.get_tensor_name_map(arch, block_count)
-    print(tensor_map)
-    for name in tensors.keys():
-        data = tensors[name]
-        if name.endswith(".self_attention.rotary_emb.inv_freq"):
-            continue
-        old_dtype = data.dtype
-        # TODO: FP16 conversion produces garbage outputs. (Q8_0 does not, so..?)
-        data = data.to(torch.float32).squeeze().numpy()
-        new_name = tensor_map.get_name(name, try_suffixes = (".weight", ".bias"))
-        if new_name is None:
-            print("Can not map tensor '" + name + "'")
-            sys.exit()
-        n_dims = len(data.shape)
-        print(new_name + ", n_dims = " + str(n_dims) + ", " + str(old_dtype) + " --> " + str(data.dtype))
-        gguf_writer.add_tensor(new_name, data)
-    print("gguf: write header")
-    gguf_writer.write_header_to_file()
-    print("gguf: write metadata")
-    gguf_writer.write_kv_data_to_file()
-    print("gguf: write tensors")
-    gguf_writer.write_tensors_to_file()
-
-    gguf_writer.close()
-
-    print(f"gguf: model successfully exported to '{args.outfile}'")
-    print("")
-
-
-if __name__ == '__main__':
-    main()
-
index e94cd1ba6e0695cf44a83b9a0b986af8d7c2d159..198cb43dde8242db2049386093c6a5157b47cb0b 100644 (file)
@@ -38,7 +38,4 @@ build-backend = "poetry.core.masonry.api"
 [tool.poetry.scripts]
 llama-convert-hf-to-gguf = "convert_hf_to_gguf:main"
 llama-convert-llama-ggml-to-gguf = "convert_llama_ggml_to_gguf:main"
-llama-convert-lora-to-ggml = "convert_lora_to_ggml:main"
-llama-convert-persimmon-to-gguf = "convert_persimmon_to_gguf:main"
-llama-convert = "convert:main"
 llama-ggml-vk-generate-shaders = "ggml_vk_generate_shaders:main"
index 4f9bcc9ca239d65e55f82679fe1fbdcc14261537..1eca1a13f999e7ae2a0a0d619353a08922d77382 100644 (file)
@@ -9,5 +9,3 @@
 -r ./requirements/requirements-convert_hf_to_gguf.txt
 -r ./requirements/requirements-convert_hf_to_gguf_update.txt
 -r ./requirements/requirements-convert_llama_ggml_to_gguf.txt
--r ./requirements/requirements-convert_lora_to_ggml.txt
--r ./requirements/requirements-convert_persimmon_to_gguf.txt
diff --git a/requirements/requirements-convert_lora_to_ggml.txt b/requirements/requirements-convert_lora_to_ggml.txt
deleted file mode 100644 (file)
index 4135cd6..0000000
+++ /dev/null
@@ -1,3 +0,0 @@
--r ./requirements-convert-legacy-llama.txt
-torch~=2.2.1
-
diff --git a/requirements/requirements-convert_persimmon_to_gguf.txt b/requirements/requirements-convert_persimmon_to_gguf.txt
deleted file mode 100644 (file)
index 4135cd6..0000000
+++ /dev/null
@@ -1,3 +0,0 @@
--r ./requirements-convert-legacy-llama.txt
-torch~=2.2.1
-