# TODO: this string has to exercise as much pre-tokenizer functionality as possible
# will be updated with time - contributions welcome
-chktxt = "\n \n\n \n\n\n \t \t\t \t\n \n \n \n \n🚀 (normal) 😶🌫️ (multiple emojis concatenated) ✅ 🦙🦙 3 33 333 3333 33333 333333 3333333 33333333 3.3 3..3 3...3 កាន់តែពិសេសអាច😁 ?我想在apple工作1314151天~ ------======= нещо на Български ''''''```````\"\"\"\"......!!!!!!?????? I've been 'told he's there, 'RE you sure? 'M not sure I'll make it, 'D you like some tea? We'Ve a'lL"
+chktxt = '\n \n\n \n\n\n \t \t\t \t\n \n \n \n \n🚀 (normal) 😶🌫️ (multiple emojis concatenated) ✅ 🦙🦙 3 33 333 3333 33333 333333 3333333 33333333 3.3 3..3 3...3 កាន់តែពិសេសអាច😁 ?我想在apple工作1314151天~ ------======= нещо на Български \'\'\'\'\'\'```````\"\"\"\"......!!!!!!?????? I\'ve been \'told he\'s there, \'RE you sure? \'M not sure I\'ll make it, \'D you like some tea? We\'Ve a\'lL'
if len(sys.argv) == 2:
token = sys.argv[1]
response = sess.get(url, headers=headers)
response.raise_for_status()
os.makedirs(os.path.dirname(save_path), exist_ok=True)
- with open(save_path, "wb") as f:
+ with open(save_path, 'wb') as f:
f.write(response.content)
logger.info(f"File {save_path} downloaded successfully")
else:
tokenizer = AutoTokenizer.from_pretrained(f"models/tokenizers/{name}")
except OSError as e:
- logger.error(
- f"Error loading tokenizer for model {name}. The model may not exist or is not accessible with the provided token. Error: {e}"
- )
+ logger.error(f"Error loading tokenizer for model {name}. The model may not exist or is not accessible with the provided token. Error: {e}")
continue # Skip to the next model if the tokenizer can't be loaded
chktok = tokenizer.encode(chktxt)
pre_tokenizer = cfg["pre_tokenizer"]
logger.info("pre_tokenizer: " + json.dumps(pre_tokenizer, indent=4))
if "ignore_merges" in cfg["model"]:
- logger.info(
- "ignore_merges: " + json.dumps(cfg["model"]["ignore_merges"], indent=4)
- )
+ logger.info("ignore_merges: " + json.dumps(cfg["model"]["ignore_merges"], indent=4))
logger.info("")
- src_ifs += f' if chkhsh == "{chkhsh}":\n'
+ src_ifs += f" if chkhsh == \"{chkhsh}\":\n"
src_ifs += f" # ref: {model['repo']}\n"
- src_ifs += f' res = "{name}"\n'
+ src_ifs += f" res = \"{name}\"\n"
src_func = f"""
def get_vocab_base_pre(self, tokenizer) -> str:
for model in models:
name = model["name"]
- print(
- f"python3 convert-hf-to-gguf.py models/tokenizers/{name}/ --outfile models/ggml-vocab-{name}.gguf --vocab-only"
- ) # noqa: NP100
+ print(f"python3 convert-hf-to-gguf.py models/tokenizers/{name}/ --outfile models/ggml-vocab-{name}.gguf --vocab-only") # noqa: NP100
logger.info("\n")
+++ /dev/null
-#!/usr/bin/env python3
-from __future__ import annotations
-
-import json
-import os
-import struct
-import sys
-from pathlib import Path
-from typing import Any, BinaryIO, Sequence
-
-import numpy as np
-import torch
-
-if 'NO_LOCAL_GGUF' not in os.environ:
- sys.path.insert(1, str(Path(__file__).parent / 'gguf-py' / 'gguf'))
-import gguf
-
-NUMPY_TYPE_TO_FTYPE: dict[str, int] = {"float32": 0, "float16": 1}
-
-
-def write_file_header(fout: BinaryIO, params: dict[str, Any]) -> None:
- fout.write(b"ggla"[::-1]) # magic (ggml lora)
- fout.write(struct.pack("i", 1)) # file version
- fout.write(struct.pack("i", params["r"]))
- # https://opendelta.readthedocs.io/en/latest/modules/deltas.html says that `lora_alpha` is an int
- # but some models ship a float value instead
- # let's convert to int, but fail if lossless conversion is not possible
- assert (
- int(params["lora_alpha"]) == params["lora_alpha"]
- ), "cannot convert float to int losslessly"
- fout.write(struct.pack("i", int(params["lora_alpha"])))
-
-
-def write_tensor_header(fout: BinaryIO, name: str, shape: Sequence[int], data_type: np.dtype[Any]) -> None:
- sname = name.encode("utf-8")
- fout.write(
- struct.pack(
- "iii",
- len(shape),
- len(sname),
- NUMPY_TYPE_TO_FTYPE[data_type.name],
- )
- )
- fout.write(struct.pack("i" * len(shape), *shape[::-1]))
- fout.write(sname)
- fout.seek((fout.tell() + 31) & -32)
-
-
-if __name__ == '__main__':
- if len(sys.argv) < 2:
- print(f"Usage: python {sys.argv[0]} <path> [arch]")
- print(
- "Path must contain HuggingFace PEFT LoRA files 'adapter_config.json' and 'adapter_model.bin'"
- )
- print(f"Arch must be one of {list(gguf.MODEL_ARCH_NAMES.values())} (default: llama)")
- sys.exit(1)
-
- input_json = os.path.join(sys.argv[1], "adapter_config.json")
- input_model = os.path.join(sys.argv[1], "adapter_model.bin")
- output_path = os.path.join(sys.argv[1], "ggml-adapter-model.bin")
-
- if os.path.exists(input_model):
- model = torch.load(input_model, map_location="cpu")
- else:
- input_model = os.path.join(sys.argv[1], "adapter_model.safetensors")
- # lazy import load_file only if lora is in safetensors format.
- from safetensors.torch import load_file
- model = load_file(input_model, device="cpu")
-
- arch_name = sys.argv[2] if len(sys.argv) == 3 else "llama"
-
- if arch_name not in gguf.MODEL_ARCH_NAMES.values():
- print(f"Error: unsupported architecture {arch_name}")
- sys.exit(1)
-
- arch = list(gguf.MODEL_ARCH_NAMES.keys())[list(gguf.MODEL_ARCH_NAMES.values()).index(arch_name)]
- name_map = gguf.TensorNameMap(arch, 200) # 200 layers ought to be enough for anyone
-
- with open(input_json, "r") as f:
- params = json.load(f)
-
- if params["peft_type"] != "LORA":
- print(f"Error: unsupported adapter type {params['peft_type']}, expected LORA")
- sys.exit(1)
-
- if params["fan_in_fan_out"] is True:
- print("Error: param fan_in_fan_out is not supported")
- sys.exit(1)
-
- if params["bias"] is not None and params["bias"] != "none":
- print("Error: param bias is not supported")
- sys.exit(1)
-
- # TODO: these seem to be layers that have been trained but without lora.
- # doesn't seem widely used but eventually should be supported
- if params["modules_to_save"] is not None and len(params["modules_to_save"]) > 0:
- print("Error: param modules_to_save is not supported")
- sys.exit(1)
-
- with open(output_path, "wb") as fout:
- fout.truncate()
-
- write_file_header(fout, params)
- for k, v in model.items():
- orig_k = k
- if k.endswith(".default.weight"):
- k = k.replace(".default.weight", ".weight")
- if k in ["llama_proj.weight", "llama_proj.bias"]:
- continue
- if k.endswith("lora_A.weight"):
- if v.dtype != torch.float16 and v.dtype != torch.float32:
- v = v.float()
- v = v.T
- else:
- v = v.float()
-
- t = v.detach().numpy()
-
- prefix = "base_model.model."
- if k.startswith(prefix):
- k = k[len(prefix) :]
-
- lora_suffixes = (".lora_A.weight", ".lora_B.weight")
- if k.endswith(lora_suffixes):
- suffix = k[-len(lora_suffixes[0]):]
- k = k[: -len(lora_suffixes[0])]
- else:
- print(f"Error: unrecognized tensor name {orig_k}")
- sys.exit(1)
-
- tname = name_map.get_name(k)
- if tname is None:
- print(f"Error: could not map tensor name {orig_k}")
- print(" Note: the arch parameter must be specified if the model is not llama")
- sys.exit(1)
-
- if suffix == ".lora_A.weight":
- tname += ".weight.loraA"
- elif suffix == ".lora_B.weight":
- tname += ".weight.loraB"
- else:
- assert False
-
- print(f"{k} => {tname} {t.shape} {t.dtype} {t.nbytes/1024/1024:.2f}MB")
- write_tensor_header(fout, tname, t.shape, t.dtype)
- t.tofile(fout)
-
- print(f"Converted {input_json} and {input_model} to {output_path}")
-
+++ /dev/null
-#!/usr/bin/env python3
-import argparse
-import os
-import sys
-from pathlib import Path
-from pprint import pprint
-
-import torch
-from sentencepiece import SentencePieceProcessor
-
-if 'NO_LOCAL_GGUF' not in os.environ:
- sys.path.insert(1, str(Path(__file__).parent / 'gguf-py'))
-import gguf
-
-
-def _flatten_dict(dct, tensors, prefix=None):
- assert isinstance(dct, dict)
- for key in dct.keys():
- new_prefix = prefix + '.' + key if prefix is not None else key
- if isinstance(dct[key], torch.Tensor):
- tensors[new_prefix] = dct[key]
- elif isinstance(dct[key], dict):
- _flatten_dict(dct[key], tensors, new_prefix)
- else:
- raise ValueError(type(dct[key]))
- return None
-
-
-def _get_sentencepiece_tokenizer_info(dir_model: Path):
- tokenizer_path = dir_model / 'adept_vocab.model'
- print('gguf: getting sentencepiece tokenizer from', tokenizer_path)
- tokenizer = SentencePieceProcessor(str(tokenizer_path))
- print('gguf: adding tokens')
- tokens: list[bytes] = []
- scores: list[float] = []
- toktypes: list[int] = []
-
- for i in range(tokenizer.vocab_size()):
- text: bytes
- score: float
-
- piece = tokenizer.id_to_piece(i)
- text = piece.encode("utf-8")
- score = tokenizer.get_score(i)
-
- toktype = 1
- if tokenizer.is_unknown(i):
- toktype = 2
- if tokenizer.is_control(i):
- toktype = 3
- if tokenizer.is_unused(i):
- toktype = 5
- if tokenizer.is_byte(i):
- toktype = 6
-
- tokens.append(text)
- scores.append(score)
- toktypes.append(toktype)
- pass
- return tokens, scores, toktypes
-
-
-def main():
- parser = argparse.ArgumentParser(description="Convert a Persimmon model from Adept (e.g. Persimmon 8b chat) to a GGML compatible file")
- parser.add_argument("--outfile", type=Path, help="path to write to; default: based on input")
- parser.add_argument("--ckpt-path", type=Path, help="path to persimmon checkpoint .pt file")
- parser.add_argument("--model-dir", type=Path, help="directory containing model e.g. 8b_chat_model_release")
- parser.add_argument("--adept-inference-dir", type=str, help="path to adept-inference code directory")
- args = parser.parse_args()
- sys.path.append(str(args.adept_inference_dir))
- persimmon_model = torch.load(args.ckpt_path)
- hparams = persimmon_model['args']
- pprint(hparams)
- tensors: dict[str, torch.Tensor] = {}
- _flatten_dict(persimmon_model['model'], tensors, None)
-
- arch = gguf.MODEL_ARCH.PERSIMMON
- gguf_writer = gguf.GGUFWriter(args.outfile, gguf.MODEL_ARCH_NAMES[arch])
-
- block_count = hparams.num_layers
- head_count = hparams.num_attention_heads
- head_count_kv = head_count
- ctx_length = hparams.seq_length
- hidden_size = hparams.hidden_size
-
- gguf_writer.add_name('persimmon-8b-chat')
- gguf_writer.add_context_length(ctx_length)
- gguf_writer.add_embedding_length(hidden_size)
- gguf_writer.add_block_count(block_count)
- gguf_writer.add_feed_forward_length(hparams.ffn_hidden_size)
- # ref: https://github.com/ggerganov/llama.cpp/pull/4889/commits/eea19039fc52ea2dbd1aab45b59ab4e3e29a3443
- gguf_writer.add_rope_dimension_count(hidden_size // head_count // 2)
- gguf_writer.add_head_count(head_count)
- gguf_writer.add_head_count_kv(head_count_kv)
- gguf_writer.add_rope_freq_base(hparams.rotary_emb_base)
- gguf_writer.add_layer_norm_eps(hparams.layernorm_epsilon)
-
- tokens, scores, toktypes = _get_sentencepiece_tokenizer_info(args.model_dir)
- gguf_writer.add_tokenizer_model('llama')
- gguf_writer.add_token_list(tokens)
- gguf_writer.add_token_scores(scores)
- gguf_writer.add_token_types(toktypes)
- gguf_writer.add_bos_token_id(71013)
- gguf_writer.add_eos_token_id(71013)
-
- tensor_map = gguf.get_tensor_name_map(arch, block_count)
- print(tensor_map)
- for name in tensors.keys():
- data = tensors[name]
- if name.endswith(".self_attention.rotary_emb.inv_freq"):
- continue
- old_dtype = data.dtype
- # TODO: FP16 conversion produces garbage outputs. (Q8_0 does not, so..?)
- data = data.to(torch.float32).squeeze().numpy()
- new_name = tensor_map.get_name(name, try_suffixes = (".weight", ".bias"))
- if new_name is None:
- print("Can not map tensor '" + name + "'")
- sys.exit()
- n_dims = len(data.shape)
- print(new_name + ", n_dims = " + str(n_dims) + ", " + str(old_dtype) + " --> " + str(data.dtype))
- gguf_writer.add_tensor(new_name, data)
- print("gguf: write header")
- gguf_writer.write_header_to_file()
- print("gguf: write metadata")
- gguf_writer.write_kv_data_to_file()
- print("gguf: write tensors")
- gguf_writer.write_tensors_to_file()
-
- gguf_writer.close()
-
- print(f"gguf: model successfully exported to '{args.outfile}'")
- print("")
-
-
-if __name__ == '__main__':
- main()
-
[tool.poetry.scripts]
llama-convert-hf-to-gguf = "convert_hf_to_gguf:main"
llama-convert-llama-ggml-to-gguf = "convert_llama_ggml_to_gguf:main"
-llama-convert-lora-to-ggml = "convert_lora_to_ggml:main"
-llama-convert-persimmon-to-gguf = "convert_persimmon_to_gguf:main"
-llama-convert = "convert:main"
llama-ggml-vk-generate-shaders = "ggml_vk_generate_shaders:main"
-r ./requirements/requirements-convert_hf_to_gguf.txt
-r ./requirements/requirements-convert_hf_to_gguf_update.txt
-r ./requirements/requirements-convert_llama_ggml_to_gguf.txt
--r ./requirements/requirements-convert_lora_to_ggml.txt
--r ./requirements/requirements-convert_persimmon_to_gguf.txt
+++ /dev/null
--r ./requirements-convert-legacy-llama.txt
-torch~=2.2.1
-
+++ /dev/null
--r ./requirements-convert-legacy-llama.txt
-torch~=2.2.1
-