params.n_print = std::stoi(argv[i]);
return true;
}
+ if (arg == "--check-tensors") {
+ params.check_tensors = true;
+ return true;
+ }
if (arg == "--ppl-output-type") {
if (++i >= argc) {
invalid_param = true;
printf(" types: int, float, bool. example: --override-kv tokenizer.ggml.add_bos_token=bool:false\n");
printf(" -ptc N, --print-token-count N\n");
printf(" print token count every N tokens (default: %d)\n", params.n_print);
+ printf(" --check-tensors check model tensor data for invalid values\n");
printf("\n");
#ifndef LOG_DISABLE_LOGS
log_print_usage();
mparams.tensor_split = params.tensor_split;
mparams.use_mmap = params.use_mmap;
mparams.use_mlock = params.use_mlock;
+ mparams.check_tensors = params.check_tensors;
if (params.kv_overrides.empty()) {
mparams.kv_overrides = NULL;
} else {
bool dump_kv_cache = false; // dump the KV cache contents for debugging purposes
bool no_kv_offload = false; // disable KV offloading
bool warmup = true; // warmup run
+ bool check_tensors = false; // validate tensor data
std::string cache_type_k = "f16"; // KV cache data type for the K
std::string cache_type_v = "f16"; // KV cache data type for the V
block_iq2_s * restrict y = vy;
quantize_row_iq2_s_reference(x, y, k);
}
+
+static bool validate_float(float f, size_t i) {
+ if (isinf(f)) {
+ fprintf(stderr, "ggml_validate_row_data: found inf value at block %zu\n", i);
+ return false;
+ }
+
+ if (isnan(f)) {
+ fprintf(stderr, "ggml_validate_row_data: found nan value at block %zu\n", i);
+ return false;
+ }
+
+ return true;
+}
+
+static bool isinf_fp16(ggml_fp16_t f) {
+ return (f & 0x7c00) == 0x7c00 && (f & 0x03ff) == 0;
+}
+
+static bool isnan_fp16(ggml_fp16_t f) {
+ return (f & 0x7c00) == 0x7c00 && (f & 0x03ff) != 0;
+}
+
+static bool validate_fp16(ggml_fp16_t f, size_t i) {
+ if (isinf_fp16(f)) {
+ fprintf(stderr, "ggml_validate_row_data: found inf value at block %zu\n", i);
+ return false;
+ }
+
+ if (isnan_fp16(f)) {
+ fprintf(stderr, "ggml_validate_row_data: found nan value at block %zu\n", i);
+ return false;
+ }
+
+ return true;
+}
+
+#define VALIDATE_ROW_DATA_D_F16_IMPL(type, data, nb) \
+ const type * q = (const type *) (data); \
+ for (size_t i = 0; i < (nb); ++i) { \
+ if (!validate_fp16(q[i].d, i)) { \
+ return false; \
+ } \
+ }
+
+#define VALIDATE_ROW_DATA_DM_F16_IMPL(type, data, nb, d, m) \
+ const type * q = (const type *) (data); \
+ for (size_t i = 0; i < (nb); ++i) { \
+ if (!validate_fp16(q[i].d, i) || !validate_fp16(q[i].m, i)) { \
+ return false; \
+ } \
+ }
+
+bool ggml_validate_row_data(enum ggml_type type, const void * data, size_t nbytes) {
+ if (type < 0 || type >= GGML_TYPE_COUNT) {
+ fprintf(stderr, "%s: invalid type %d\n", __func__, type);
+ return false;
+ }
+
+ if (nbytes % ggml_type_size(type) != 0) {
+ fprintf(stderr, "%s: invalid size %zu for type %d\n", __func__, nbytes, type);
+ return false;
+ }
+
+ const size_t nb = nbytes/ggml_type_size(type);
+
+ switch (type) {
+ case GGML_TYPE_F16:
+ {
+ const ggml_fp16_t * f = (const ggml_fp16_t *) data;
+ size_t i = 0;
+#if defined(__AVX2__)
+ for (; i + 15 < nb; i += 16) {
+ __m256i v = _mm256_loadu_si256((const __m256i *)(f + i));
+ __m256i vexp = _mm256_and_si256(v, _mm256_set1_epi16(0x7c00));
+ __m256i cmp = _mm256_cmpeq_epi16(vexp, _mm256_set1_epi16(0x7c00));
+ int mask = _mm256_movemask_epi8(cmp);
+ if (mask) {
+ for (size_t j = 0; j < 16; ++j) {
+ if (!validate_fp16(f[i + j], i + j)) {
+ return false;
+ }
+ }
+ GGML_UNREACHABLE();
+ }
+ }
+#elif defined(__ARM_NEON)
+ for (; i + 7 < nb; i += 8) {
+ uint16x8_t v = vld1q_u16(f + i);
+ uint16x8_t vexp = vandq_u16(v, vdupq_n_u16(0x7c00));
+ uint16x8_t cmp = vceqq_u16(vexp, vdupq_n_u16(0x7c00));
+ uint64_t mask = vget_lane_u64(vreinterpret_u64_u8(vshrn_n_u16(cmp, 4)), 0);
+ if (mask) {
+ for (size_t j = 0; j < 8; ++j) {
+ if (!validate_fp16(f[i + j], i + j)) {
+ return false;
+ }
+ }
+ GGML_UNREACHABLE();
+ }
+ }
+#endif
+ for (; i < nb; ++i) {
+ if (!validate_fp16(f[i], i)) {
+ return false;
+ }
+ }
+ } break;
+ case GGML_TYPE_F32:
+ {
+ const float * f = (const float *) data;
+ size_t i = 0;
+#if defined(__AVX2__)
+ for (; i + 7 < nb; i += 8) {
+ __m256i v = _mm256_loadu_si256((const __m256i *)(f + i));
+ __m256i vexp = _mm256_and_si256(v, _mm256_set1_epi32(0x7f800000));
+ __m256i cmp = _mm256_cmpeq_epi32(vexp, _mm256_set1_epi32(0x7f800000));
+ int mask = _mm256_movemask_epi8(cmp);
+ if (mask) {
+ for (size_t j = 0; j < 8; ++j) {
+ if (!validate_float(f[i + j], i + j)) {
+ return false;
+ }
+ }
+ GGML_UNREACHABLE();
+ }
+ }
+#elif defined(__ARM_NEON)
+ for (; i + 3 < nb; i += 4) {
+ uint32x4_t v = vld1q_u32((const uint32_t *)f + i);
+ uint32x4_t vexp = vandq_u32(v, vdupq_n_u32(0x7f800000));
+ uint32x4_t cmp = vceqq_u32(vexp, vdupq_n_u32(0x7f800000));
+ uint64_t mask = vget_lane_u64(vreinterpret_u64_u16(vshrn_n_u32(cmp, 8)), 0);
+ if (mask) {
+ for (size_t j = 0; j < 4; ++j) {
+ if (!validate_float(f[i + j], i + j)) {
+ return false;
+ }
+ }
+ GGML_UNREACHABLE();
+ }
+ }
+#endif
+ for (; i < nb; ++i) {
+ if (!validate_float(f[i], i)) {
+ return false;
+ }
+ }
+ } break;
+ case GGML_TYPE_F64:
+ {
+ const double * f = (const double *) data;
+ for (size_t i = 0; i < nb; ++i) {
+ if (!validate_float(f[i], i)) {
+ return false;
+ }
+ }
+ } break;
+ case GGML_TYPE_Q4_0:
+ {
+ VALIDATE_ROW_DATA_D_F16_IMPL(block_q4_0, data, nb);
+ } break;
+ case GGML_TYPE_Q4_1:
+ {
+ VALIDATE_ROW_DATA_DM_F16_IMPL(block_q4_1, data, nb, d, m);
+ } break;
+ case GGML_TYPE_Q5_0:
+ {
+ VALIDATE_ROW_DATA_D_F16_IMPL(block_q5_0, data, nb);
+ } break;
+ case GGML_TYPE_Q5_1:
+ {
+ VALIDATE_ROW_DATA_DM_F16_IMPL(block_q5_1, data, nb, d, m);
+ } break;
+ case GGML_TYPE_Q8_0:
+ {
+ VALIDATE_ROW_DATA_D_F16_IMPL(block_q8_0, data, nb);
+ } break;
+ case GGML_TYPE_Q2_K:
+ {
+ VALIDATE_ROW_DATA_DM_F16_IMPL(block_q2_K, data, nb, d, dmin);
+ } break;
+ case GGML_TYPE_Q3_K:
+ {
+ VALIDATE_ROW_DATA_D_F16_IMPL(block_q3_K, data, nb);
+ } break;
+ case GGML_TYPE_Q4_K:
+ {
+ #ifdef GGML_QKK_64
+ VALIDATE_ROW_DATA_DM_F16_IMPL(block_q4_K, data, nb, d[0], d[1]);
+ #else
+ VALIDATE_ROW_DATA_DM_F16_IMPL(block_q4_K, data, nb, d, dmin);
+ #endif
+ } break;
+ case GGML_TYPE_Q5_K:
+ {
+ #ifdef GGML_QKK_64
+ VALIDATE_ROW_DATA_D_F16_IMPL(block_q5_K, data, nb);
+ #else
+ VALIDATE_ROW_DATA_DM_F16_IMPL(block_q5_K, data, nb, d, dmin);
+ #endif
+ } break;
+ case GGML_TYPE_Q6_K:
+ {
+ VALIDATE_ROW_DATA_D_F16_IMPL(block_q6_K, data, nb);
+ } break;
+ case GGML_TYPE_Q8_K:
+ {
+ const block_q8_K * q = (const block_q8_K *) data;
+ for (size_t i = 0; i < nb; ++i) {
+ if (!validate_float(q[i].d, i)) {
+ return false;
+ }
+ }
+ } break;
+ case GGML_TYPE_IQ1_S:
+ {
+ VALIDATE_ROW_DATA_D_F16_IMPL(block_iq1_s, data, nb);
+ } break;
+ case GGML_TYPE_IQ1_M:
+ {
+ const block_iq1_m * q = (const block_iq1_m *) data;
+ for (size_t i = 0; i < nb; ++i) {
+ #if QK_K == 64
+ if (!validate_fp16(q[i].d, i)) {
+ return false;
+ }
+ #else
+ iq1m_scale_t scale;
+ const uint16_t * sc = (const uint16_t *)q[i].scales;
+ scale.u16 = (sc[0] >> 12) | ((sc[1] >> 8) & 0x00f0) | ((sc[2] >> 4) & 0x0f00) | (sc[3] & 0xf000);
+ if (!validate_fp16(scale.f16, i)) {
+ return false;
+ }
+ #endif
+ }
+ } break;
+ case GGML_TYPE_IQ2_XXS:
+ {
+ VALIDATE_ROW_DATA_D_F16_IMPL(block_iq2_xxs, data, nb);
+ } break;
+ case GGML_TYPE_IQ2_XS:
+ {
+ VALIDATE_ROW_DATA_D_F16_IMPL(block_iq2_xs, data, nb);
+ } break;
+ case GGML_TYPE_IQ2_S:
+ {
+ VALIDATE_ROW_DATA_D_F16_IMPL(block_iq2_s, data, nb);
+ } break;
+ case GGML_TYPE_IQ3_XXS:
+ {
+ VALIDATE_ROW_DATA_D_F16_IMPL(block_iq3_xxs, data, nb);
+ } break;
+
+ case GGML_TYPE_IQ3_S:
+ {
+ VALIDATE_ROW_DATA_D_F16_IMPL(block_iq3_s, data, nb);
+ } break;
+ case GGML_TYPE_IQ4_XS:
+ #if QK_K != 64
+ {
+ VALIDATE_ROW_DATA_D_F16_IMPL(block_iq4_xs, data, nb);
+ } break;
+ #endif
+ // with QK_K == 64, iq4_xs is iq4_nl
+ case GGML_TYPE_IQ4_NL:
+ {
+ VALIDATE_ROW_DATA_D_F16_IMPL(block_iq4_nl, data, nb);
+ } break;
+ case GGML_TYPE_I8:
+ case GGML_TYPE_I16:
+ case GGML_TYPE_I32:
+ case GGML_TYPE_I64:
+ // nothing to validate
+ break;
+ default:
+ {
+ fprintf(stderr, "%s: invalid type %d\n", __func__, type);
+ return false;
+ }
+ }
+
+ return true;
+}
// use this to compute the memory overhead of a tensor
GGML_API size_t ggml_tensor_overhead(void);
+ GGML_API bool ggml_validate_row_data(enum ggml_type type, const void * data, size_t nbytes);
+
// main
GGML_API struct ggml_context * ggml_init(struct ggml_init_params params);
#include <forward_list>
#include <fstream>
#include <functional>
+#include <future>
#include <initializer_list>
#include <locale>
#include <map>
size_t n_bytes = 0;
bool use_mmap = false;
+ bool check_tensors;
llama_files files;
llama_ftype ftype;
std::string arch_name;
LLM_KV llm_kv = LLM_KV(LLM_ARCH_UNKNOWN);
- llama_model_loader(const std::string & fname, bool use_mmap, const struct llama_model_kv_override * param_overrides_p) {
+ llama_model_loader(const std::string & fname, bool use_mmap, bool check_tensors, const struct llama_model_kv_override * param_overrides_p) {
int trace = 0;
if (getenv("LLAMA_TRACE")) {
trace = atoi(getenv("LLAMA_TRACE"));
}
this->use_mmap = use_mmap;
+ this->check_tensors = check_tensors;
}
~llama_model_loader() {
file->seek(w.offs, SEEK_SET);
file->read_raw(cur->data, ggml_nbytes(cur));
}
+
+ if (check_tensors && !ggml_validate_row_data(cur->type, cur->data, ggml_nbytes(cur))) {
+ throw std::runtime_error(format("tensor '%s' has invalid data", ggml_get_name(cur)));
+ }
}
size_t size_done = 0;
GGML_ASSERT(size_data != 0 && "call init_mappings() first");
std::vector<no_init<uint8_t>> read_buf;
+ std::vector<std::future<std::pair<ggml_tensor *, bool>>> validation_result;
+
for (struct ggml_tensor * cur = ggml_get_first_tensor(ctx); cur != NULL; cur = ggml_get_next_tensor(ctx, cur)) {
const auto * weight = get_weight(ggml_get_name(cur));
if (weight == nullptr) {
if (bufs_mmap.count(weight->idx)) {
buf_mmap = bufs_mmap.at(weight->idx);
}
+ uint8_t * data = (uint8_t *) mapping->addr + weight->offs;
+
+ if (check_tensors) {
+ validation_result.emplace_back(std::async(std::launch::async, [cur, data, n_size] {
+ return std::make_pair(cur, ggml_validate_row_data(cur->type, data, n_size));
+ }));
+ }
+
GGML_ASSERT(buf_mmap || cur->data); // either we have a buffer to allocate the tensor in, or it is already allocated
if (buf_mmap && cur->data == nullptr) {
- ggml_backend_tensor_alloc(buf_mmap, cur, (uint8_t *) mapping->addr + weight->offs);
+ ggml_backend_tensor_alloc(buf_mmap, cur, data);
if (lmlocks) {
const auto & lmlock = lmlocks->at(weight->idx);
- lmlock->grow_to(weight->offs + ggml_nbytes(cur));
+ lmlock->grow_to(weight->offs + n_size);
}
auto & mmap_used = mmaps_used[weight->idx];
mmap_used.first = std::min(mmap_used.first, weight->offs);
mmap_used.second = std::max(mmap_used.second, weight->offs + n_size);
} else {
- ggml_backend_tensor_set(cur, (uint8_t *) mapping->addr + weight->offs, 0, n_size);
+ ggml_backend_tensor_set(cur, data, 0, n_size);
}
} else {
GGML_ASSERT(weight->idx < files.size());
const auto & file = files.at(weight->idx);
if (ggml_backend_buffer_is_host(cur->buffer)) {
file->seek(weight->offs, SEEK_SET);
- file->read_raw(cur->data, ggml_nbytes(cur));
+ file->read_raw(cur->data, n_size);
+ if (check_tensors) {
+ validation_result.emplace_back(std::async(std::launch::async, [cur, n_size] {
+ return std::make_pair(cur, ggml_validate_row_data(cur->type, cur->data, n_size));
+ }));
+ }
} else {
- read_buf.resize(ggml_nbytes(cur));
+ read_buf.resize(n_size);
file->seek(weight->offs, SEEK_SET);
- file->read_raw(read_buf.data(), ggml_nbytes(cur));
+ file->read_raw(read_buf.data(), n_size);
ggml_backend_tensor_set(cur, read_buf.data(), 0, n_size);
+ if (check_tensors && !ggml_validate_row_data(cur->type, read_buf.data(), n_size)) {
+ throw std::runtime_error(format("tensor '%s' has invalid data", ggml_get_name(cur)));
+ }
}
}
size_done += n_size;
}
+ // check validation results
+ bool validation_failed = false;
+ for (auto & future : validation_result) {
+ auto result = future.get();
+ if (!result.second) {
+ LLAMA_LOG_ERROR("%s: tensor '%s' has invalid data\n", __func__, ggml_get_name(result.first));
+ validation_failed = true;
+ }
+ }
+ if (validation_failed) {
+ throw std::runtime_error("found tensors with invalid data");
+ }
+
// check if this is the last call and do final cleanup
if (size_done >= size_data) {
// unmap offloaded tensors and metadata
// Returns 0 on success, -1 on error, and -2 on cancellation via llama_progress_callback
static int llama_model_load(const std::string & fname, llama_model & model, llama_model_params & params) {
try {
- llama_model_loader ml(fname, params.use_mmap, params.kv_overrides);
+ llama_model_loader ml(fname, params.use_mmap, params.check_tensors, params.kv_overrides);
model.hparams.vocab_only = params.vocab_only;
}
static size_t llama_tensor_quantize_internal(enum ggml_type new_type, const float * f32_data, void * new_data, const int64_t chunk_size, int64_t nrows, int64_t n_per_row, const float * imatrix, std::vector<std::thread> & workers, const int nthread) {
- std::mutex mutex;
- int64_t counter = 0;
- size_t new_size = 0;
if (nthread < 2) {
// single-thread
- return ggml_quantize_chunk(new_type, f32_data, new_data, 0, nrows, n_per_row, imatrix);
+ size_t new_size = ggml_quantize_chunk(new_type, f32_data, new_data, 0, nrows, n_per_row, imatrix);
+ if (!ggml_validate_row_data(new_type, new_data, new_size)) {
+ throw std::runtime_error("quantized data validation failed");
+ }
+ return new_size;
}
- auto compute = [&mutex, &counter, &new_size, new_type, f32_data, new_data, chunk_size,
+
+ std::mutex mutex;
+ int64_t counter = 0;
+ size_t new_size = 0;
+ bool valid = true;
+ auto compute = [&mutex, &counter, &new_size, &valid, new_type, f32_data, new_data, chunk_size,
nrows, n_per_row, imatrix]() {
const int64_t nrows_per_chunk = chunk_size / n_per_row;
size_t local_size = 0;
}
lock.unlock();
const int64_t this_nrow = std::min(nrows - first_row, nrows_per_chunk);
- local_size += ggml_quantize_chunk(new_type, f32_data, new_data, first_row * n_per_row, this_nrow, n_per_row, imatrix);
+ size_t this_size = ggml_quantize_chunk(new_type, f32_data, new_data, first_row * n_per_row, this_nrow, n_per_row, imatrix);
+ local_size += this_size;
+
+ // validate the quantized data
+ const size_t row_size = ggml_row_size(new_type, n_per_row);
+ void * this_data = (char *) new_data + first_row * row_size;
+ if (!ggml_validate_row_data(new_type, this_data, this_size)) {
+ std::unique_lock<std::mutex> lock(mutex);
+ valid = false;
+ break;
+ }
}
};
for (int it = 0; it < nthread - 1; ++it) {
compute();
for (auto & w : workers) { w.join(); }
workers.clear();
+ if (!valid) {
+ throw std::runtime_error("quantized data validation failed");
+ }
return new_size;
}
auto v = (std::vector<llama_model_kv_override>*)params->kv_overrides;
kv_overrides = v->data();
}
- llama_model_loader ml(fname_inp, use_mmap, kv_overrides);
+ llama_model_loader ml(fname_inp, use_mmap, /*check_tensors*/ true, kv_overrides);
ml.init_mappings(false); // no prefetching
llama_model model;
std::unique_ptr<llama_model_loader> ml;
if (path_base_model) {
LLAMA_LOG_INFO("%s: loading base model from '%s'\n", __func__, path_base_model);
- ml.reset(new llama_model_loader(path_base_model, /*use_mmap*/ true, /*kv_overrides*/ nullptr));
+ ml.reset(new llama_model_loader(path_base_model, /*use_mmap*/ true, /*check_tensors*/ false, /*kv_overrides*/ nullptr));
ml->init_mappings(/*prefetch*/ false); // no prefetching
}
/*.vocab_only =*/ false,
/*.use_mmap =*/ true,
/*.use_mlock =*/ false,
+ /*.check_tensors =*/ false,
};
#ifdef GGML_USE_METAL
const struct llama_model_kv_override * kv_overrides;
// Keep the booleans together to avoid misalignment during copy-by-value.
- bool vocab_only; // only load the vocabulary, no weights
- bool use_mmap; // use mmap if possible
- bool use_mlock; // force system to keep model in RAM
+ bool vocab_only; // only load the vocabulary, no weights
+ bool use_mmap; // use mmap if possible
+ bool use_mlock; // force system to keep model in RAM
+ bool check_tensors; // validate model tensor data
};
struct llama_context_params {